Source code for langchain_community.retrievers.nanopq
from __future__ import annotations
import concurrent.futures
from typing import Any, Iterable, List, Optional
import numpy as np
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.retrievers import BaseRetriever
from pydantic import ConfigDict
[docs]
def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray:
"""
Create an index of embeddings for a list of contexts.
Args:
contexts: List of contexts to embed.
embeddings: Embeddings model to use.
Returns:
Index of embeddings.
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
return np.array(list(executor.map(embeddings.embed_query, contexts)))
[docs]
class NanoPQRetriever(BaseRetriever):
"""`NanoPQ retriever."""
embeddings: Embeddings
"""Embeddings model to use."""
index: Any = None
"""Index of embeddings."""
texts: List[str]
"""List of texts to index."""
metadatas: Optional[List[dict]] = None
"""List of metadatas corresponding with each text."""
k: int = 4
"""Number of results to return."""
relevancy_threshold: Optional[float] = None
"""Threshold for relevancy."""
subspace: int = 4
"""No of subspaces to be created, should be a multiple of embedding shape"""
clusters: int = 128
"""No of clusters to be created"""
model_config = ConfigDict(
arbitrary_types_allowed=True,
)
[docs]
@classmethod
def from_texts(
cls,
texts: List[str],
embeddings: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> NanoPQRetriever:
index = create_index(texts, embeddings)
return cls(
embeddings=embeddings,
index=index,
texts=texts,
metadatas=metadatas,
**kwargs,
)
[docs]
@classmethod
def from_documents(
cls,
documents: Iterable[Document],
embeddings: Embeddings,
**kwargs: Any,
) -> NanoPQRetriever:
texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
return cls.from_texts(
texts=texts, embeddings=embeddings, metadatas=metadatas, **kwargs
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
try:
from nanopq import PQ
except ImportError:
raise ImportError(
"Could not import nanopq, please install with `pip install " "nanopq`."
)
query_embeds = np.array(self.embeddings.embed_query(query))
try:
pq = PQ(M=self.subspace, Ks=self.clusters, verbose=True).fit(
self.index.astype("float32")
)
except AssertionError:
error_message = (
"Received params: training_sample={training_sample}, "
"n_cluster={n_clusters}, subspace={subspace}, "
"embedding_shape={embedding_shape}. Issue with the combination. "
"Please retrace back to find the exact error"
).format(
training_sample=self.index.shape[0],
n_clusters=self.clusters,
subspace=self.subspace,
embedding_shape=self.index.shape[1],
)
raise RuntimeError(error_message)
index_code = pq.encode(vecs=self.index.astype("float32"))
dt = pq.dtable(query=query_embeds.astype("float32"))
dists = dt.adist(codes=index_code)
sorted_ix = np.argsort(dists)
top_k_results = [
Document(
page_content=self.texts[row],
metadata=self.metadatas[row] if self.metadatas else {},
)
for row in sorted_ix[0 : self.k]
]
return top_k_results