from __future__ import annotations
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from pydantic import model_validator
if TYPE_CHECKING:
from zep_python.memory import MemorySearchResult
[docs]
class SearchScope(str, Enum):
"""Which documents to search. Messages or Summaries?"""
messages = "messages"
"""Search chat history messages."""
summary = "summary"
"""Search chat history summaries."""
[docs]
class SearchType(str, Enum):
"""Enumerator of the types of search to perform."""
similarity = "similarity"
"""Similarity search."""
mmr = "mmr"
"""Maximal Marginal Relevance reranking of similarity search."""
[docs]
class ZepRetriever(BaseRetriever):
"""`Zep` MemoryStore Retriever.
Search your user's long-term chat history with Zep.
Zep offers both simple semantic search and Maximal Marginal Relevance (MMR)
reranking of search results.
Note: You will need to provide the user's `session_id` to use this retriever.
Args:
url: URL of your Zep server (required)
api_key: Your Zep API key (optional)
session_id: Identifies your user or a user's session (required)
top_k: Number of documents to return (default: 3, optional)
search_type: Type of search to perform (similarity / mmr) (default: similarity,
optional)
mmr_lambda: Lambda value for MMR search. Defaults to 0.5 (optional)
Zep - Fast, scalable building blocks for LLM Apps
=========
Zep is an open source platform for productionizing LLM apps. Go from a prototype
built in LangChain or LlamaIndex, or a custom app, to production in minutes without
rewriting code.
For server installation instructions, see:
https://docs.getzep.com/deployment/quickstart/
"""
zep_client: Optional[Any] = None
"""Zep client."""
url: str
"""URL of your Zep server."""
api_key: Optional[str] = None
"""Your Zep API key."""
session_id: str
"""Zep session ID."""
top_k: Optional[int]
"""Number of items to return."""
search_scope: SearchScope = SearchScope.messages
"""Which documents to search. Messages or Summaries?"""
search_type: SearchType = SearchType.similarity
"""Type of search to perform (similarity / mmr)"""
mmr_lambda: Optional[float] = None
"""Lambda value for MMR search."""
@model_validator(mode="before")
@classmethod
def create_client(cls, values: dict) -> Any:
try:
from zep_python import ZepClient
except ImportError:
raise ImportError(
"Could not import zep-python package. "
"Please install it with `pip install zep-python`."
)
values["zep_client"] = values.get(
"zep_client",
ZepClient(base_url=values["url"], api_key=values.get("api_key")),
)
return values
def _messages_search_result_to_doc(
self, results: List[MemorySearchResult]
) -> List[Document]:
return [
Document(
page_content=r.message.pop("content"),
metadata={"score": r.dist, **r.message},
)
for r in results
if r.message
]
def _summary_search_result_to_doc(
self, results: List[MemorySearchResult]
) -> List[Document]:
return [
Document(
page_content=r.summary.content,
metadata={
"score": r.dist,
"uuid": r.summary.uuid,
"created_at": r.summary.created_at,
"token_count": r.summary.token_count,
},
)
for r in results
if r.summary
]
def _get_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
metadata: Optional[Dict[str, Any]] = None,
) -> List[Document]:
from zep_python.memory import MemorySearchPayload
if not self.zep_client:
raise RuntimeError("Zep client not initialized.")
payload = MemorySearchPayload(
text=query,
metadata=metadata,
search_scope=self.search_scope,
search_type=self.search_type,
mmr_lambda=self.mmr_lambda,
)
results: List[MemorySearchResult] = self.zep_client.memory.search_memory(
self.session_id, payload, limit=self.top_k
)
if self.search_scope == SearchScope.summary:
return self._summary_search_result_to_doc(results)
return self._messages_search_result_to_doc(results)
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
metadata: Optional[Dict[str, Any]] = None,
) -> List[Document]:
from zep_python.memory import MemorySearchPayload
if not self.zep_client:
raise RuntimeError("Zep client not initialized.")
payload = MemorySearchPayload(
text=query,
metadata=metadata,
search_scope=self.search_scope,
search_type=self.search_type,
mmr_lambda=self.mmr_lambda,
)
results: List[MemorySearchResult] = await self.zep_client.memory.asearch_memory(
self.session_id, payload, limit=self.top_k
)
if self.search_scope == SearchScope.summary:
return self._summary_search_result_to_doc(results)
return self._messages_search_result_to_doc(results)