[docs]classZepCloudRetriever(BaseRetriever):"""`Zep Cloud` MemoryStore Retriever. Search your user's long-term chat history with Zep. Zep offers both simple semantic search and Maximal Marginal Relevance (MMR) reranking of search results. Note: You will need to provide the user's `session_id` to use this retriever. Args: api_key: Your Zep API key session_id: Identifies your user or a user's session (required) top_k: Number of documents to return (default: 3, optional) search_type: Type of search to perform (similarity / mmr) (default: similarity, optional) mmr_lambda: Lambda value for MMR search. Defaults to 0.5 (optional) Zep - Recall, understand, and extract data from chat histories. Power personalized AI experiences. ========= Zep is a long-term memory service for AI Assistant apps. With Zep, you can provide AI assistants with the ability to recall past conversations, no matter how distant, while also reducing hallucinations, latency, and cost. see Zep Cloud Docs: https://help.getzep.com """api_key:str"""Your Zep API key."""zep_client:Zep"""Zep client used for making API requests."""zep_client_async:AsyncZep"""Async Zep client used for making API requests."""session_id:str"""Zep session ID."""top_k:Optional[int]"""Number of items to return."""search_scope:SearchScope="messages""""Which documents to search. Messages or Summaries?"""search_type:SearchType="similarity""""Type of search to perform (similarity / mmr)"""mmr_lambda:Optional[float]=None"""Lambda value for MMR search."""@model_validator(mode="before")@classmethoddefcreate_client(cls,values:dict)->Any:try:fromzep_cloud.clientimportAsyncZep,ZepexceptImportError:raiseImportError("Could not import zep-cloud package. ""Please install it with `pip install zep-cloud`.")ifvalues.get("api_key")isNone:raiseValueError("Zep API key is required.")values["zep_client"]=Zep(api_key=values.get("api_key"))values["zep_client_async"]=AsyncZep(api_key=values.get("api_key"))returnvaluesdef_messages_search_result_to_doc(self,results:List[MemorySearchResult])->List[Document]:return[Document(page_content=str(r.message.content),metadata={"score":r.score,"uuid":r.message.uuid_,"created_at":r.message.created_at,"token_count":r.message.token_count,"role":r.message.roleorr.message.role_type,},)forrinresultsor[]ifr.message]def_summary_search_result_to_doc(self,results:List[MemorySearchResult])->List[Document]:return[Document(page_content=str(r.summary.content),metadata={"score":r.score,"uuid":r.summary.uuid_,"created_at":r.summary.created_at,"token_count":r.summary.token_count,},)forrinresultsifr.summary]def_get_relevant_documents(self,query:str,*,run_manager:CallbackManagerForRetrieverRun,metadata:Optional[Dict[str,Any]]=None,)->List[Document]:ifnotself.zep_client:raiseRuntimeError("Zep client not initialized.")results=self.zep_client.memory.search(self.session_id,text=query,metadata=metadata,search_scope=self.search_scope,search_type=self.search_type,mmr_lambda=self.mmr_lambda,limit=self.top_k,)ifself.search_scope=="summary":returnself._summary_search_result_to_doc(results)returnself._messages_search_result_to_doc(results)asyncdef_aget_relevant_documents(self,query:str,*,run_manager:AsyncCallbackManagerForRetrieverRun,metadata:Optional[Dict[str,Any]]=None,)->List[Document]:ifnotself.zep_client_async:raiseRuntimeError("Zep client not initialized.")results=awaitself.zep_client_async.memory.search(self.session_id,text=query,metadata=metadata,search_scope=self.search_scope,search_type=self.search_type,mmr_lambda=self.mmr_lambda,limit=self.top_k,)ifself.search_scope=="summary":returnself._summary_search_result_to_doc(results)returnself._messages_search_result_to_doc(results)