Source code for langchain_community.tools.azure_ai_services.image_analysis

from __future__ import annotations

import logging
from typing import Any, Dict, Optional

from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from pydantic import model_validator

from langchain_community.tools.azure_ai_services.utils import (
    detect_file_src_type,
)

logger = logging.getLogger(__name__)


[docs] class AzureAiServicesImageAnalysisTool(BaseTool): # type: ignore[override] """Tool that queries the Azure AI Services Image Analysis API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-sdk/image-analysis-client-library-40 """ azure_ai_services_key: str = "" #: :meta private: azure_ai_services_endpoint: str = "" #: :meta private: image_analysis_client: Any #: :meta private: visual_features: Any #: :meta private: name: str = "azure_ai_services_image_analysis" description: str = ( "A wrapper around Azure AI Services Image Analysis. " "Useful for when you need to analyze images. " "Input should be a url to an image." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" ) azure_ai_services_endpoint = get_from_dict_or_env( values, "azure_ai_services_endpoint", "AZURE_AI_SERVICES_ENDPOINT" ) """Validate that azure-ai-vision-imageanalysis is installed.""" try: from azure.ai.vision.imageanalysis import ImageAnalysisClient from azure.ai.vision.imageanalysis.models import VisualFeatures from azure.core.credentials import AzureKeyCredential except ImportError: raise ImportError( "azure-ai-vision-imageanalysis is not installed. " "Run `pip install azure-ai-vision-imageanalysis` to install. " ) """Validate Azure AI Vision Image Analysis client can be initialized.""" try: values["image_analysis_client"] = ImageAnalysisClient( endpoint=azure_ai_services_endpoint, credential=AzureKeyCredential(azure_ai_services_key), ) except Exception as e: raise RuntimeError( f"Initialization of Azure AI Vision Image Analysis client failed: {e}" ) values["visual_features"] = [ VisualFeatures.TAGS, VisualFeatures.OBJECTS, VisualFeatures.CAPTION, VisualFeatures.READ, ] return values def _image_analysis(self, image_path: str) -> Dict: try: from azure.ai.vision.imageanalysis import ImageAnalysisClient except ImportError: pass self.image_analysis_client: ImageAnalysisClient image_src_type = detect_file_src_type(image_path) if image_src_type == "local": with open(image_path, "rb") as image_file: image_data = image_file.read() result = self.image_analysis_client.analyze( image_data=image_data, visual_features=self.visual_features, ) elif image_src_type == "remote": result = self.image_analysis_client.analyze_from_url( image_url=image_path, visual_features=self.visual_features, ) else: raise ValueError(f"Invalid image path: {image_path}") res_dict = {} if result: if result.caption is not None: res_dict["caption"] = result.caption.text if result.objects is not None: res_dict["objects"] = [obj.tags[0].name for obj in result.objects.list] if result.tags is not None: res_dict["tags"] = [tag.name for tag in result.tags.list] if result.read is not None and len(result.read.blocks) > 0: res_dict["text"] = [line.text for line in result.read.blocks[0].lines] return res_dict def _format_image_analysis_result(self, image_analysis_result: Dict) -> str: formatted_result = [] if "caption" in image_analysis_result: formatted_result.append("Caption: " + image_analysis_result["caption"]) if ( "objects" in image_analysis_result and len(image_analysis_result["objects"]) > 0 ): formatted_result.append( "Objects: " + ", ".join(image_analysis_result["objects"]) ) if "tags" in image_analysis_result and len(image_analysis_result["tags"]) > 0: formatted_result.append("Tags: " + ", ".join(image_analysis_result["tags"])) if "text" in image_analysis_result and len(image_analysis_result["text"]) > 0: formatted_result.append("Text: " + ", ".join(image_analysis_result["text"])) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: image_analysis_result = self._image_analysis(query) if not image_analysis_result: return "No good image analysis result was found" return self._format_image_analysis_result(image_analysis_result) except Exception as e: raise RuntimeError(f"Error while running AzureAiImageAnalysisTool: {e}")