Source code for langchain_community.utilities.cassandra_database

"""Apache Cassandra database wrapper."""

from __future__ import annotations

import re
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple, Union

from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing_extensions import Self

if TYPE_CHECKING:
    from cassandra.cluster import ResultSet, Session

IGNORED_KEYSPACES = [
    "system",
    "system_auth",
    "system_distributed",
    "system_schema",
    "system_traces",
    "system_views",
    "datastax_sla",
    "data_endpoint_auth",
]


[docs] class CassandraDatabase: """Apache Cassandra® database wrapper."""
[docs] def __init__( self, session: Optional[Session] = None, exclude_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, cassio_init_kwargs: Optional[Dict[str, Any]] = None, ): _session = self._resolve_session(session, cassio_init_kwargs) if not _session: raise ValueError("Session not provided and cannot be resolved") self._session = _session self._exclude_keyspaces = IGNORED_KEYSPACES self._exclude_tables = exclude_tables or [] self._include_tables = include_tables or []
[docs] def run( self, query: str, fetch: str = "all", **kwargs: Any, ) -> Union[list, Dict[str, Any], ResultSet]: """Execute a CQL query and return the results.""" if fetch == "all": return self.fetch_all(query, **kwargs) elif fetch == "one": return self.fetch_one(query, **kwargs) elif fetch == "cursor": return self._fetch(query, **kwargs) else: raise ValueError("Fetch parameter must be either 'one', 'all', or 'cursor'")
def _fetch(self, query: str, **kwargs: Any) -> ResultSet: clean_query = self._validate_cql(query, "SELECT") return self._session.execute(clean_query, **kwargs)
[docs] def fetch_all(self, query: str, **kwargs: Any) -> list: return list(self._fetch(query, **kwargs))
[docs] def fetch_one(self, query: str, **kwargs: Any) -> Dict[str, Any]: result = self._fetch(query, **kwargs) return result.one()._asdict() if result else {}
[docs] def get_keyspace_tables(self, keyspace: str) -> List[Table]: """Get the Table objects for the specified keyspace.""" schema = self._resolve_schema([keyspace]) if keyspace in schema: return schema[keyspace] else: return []
# This is a more basic string building function that doesn't use a query builder # or prepared statements # TODO: Refactor to use prepared statements
[docs] def get_table_data( self, keyspace: str, table: str, predicate: str, limit: int ) -> str: """Get data from the specified table in the specified keyspace.""" query = f"SELECT * FROM {keyspace}.{table}" if predicate: query += f" WHERE {predicate}" if limit: query += f" LIMIT {limit}" query += ";" result = self.fetch_all(query) data = "\n".join(str(row) for row in result) return data
[docs] def get_context(self) -> Dict[str, Any]: """Return db context that you may want in agent prompt.""" keyspaces = self._fetch_keyspaces() return {"keyspaces": ", ".join(keyspaces)}
[docs] def format_keyspace_to_markdown( self, keyspace: str, tables: Optional[List[Table]] = None ) -> str: """ Generates a markdown representation of the schema for a specific keyspace by iterating over all tables within that keyspace and calling their as_markdown method. Args: keyspace: The name of the keyspace to generate markdown documentation for. tables: list of tables in the keyspace; it will be resolved if not provided. Returns: A string containing the markdown representation of the specified keyspace schema. """ if not tables: tables = self.get_keyspace_tables(keyspace) if tables: output = f"## Keyspace: {keyspace}\n\n" if tables: for table in tables: output += table.as_markdown(include_keyspace=False, header_level=3) output += "\n\n" else: output += "No tables present in keyspace\n\n" return output else: return ""
[docs] def format_schema_to_markdown(self) -> str: """ Generates a markdown representation of the schema for all keyspaces and tables within the CassandraDatabase instance. This method utilizes the format_keyspace_to_markdown method to create markdown sections for each keyspace, assembling them into a comprehensive schema document. Iterates through each keyspace in the database, utilizing format_keyspace_to_markdown to generate markdown for each keyspace's schema, including details of its tables. These sections are concatenated to form a single markdown document that represents the schema of the entire database or the subset of keyspaces that have been resolved in this instance. Returns: A markdown string that documents the schema of all resolved keyspaces and their tables within this CassandraDatabase instance. This includes keyspace names, table names, comments, columns, partition keys, clustering keys, and indexes for each table. """ schema = self._resolve_schema() output = "# Cassandra Database Schema\n\n" for keyspace, tables in schema.items(): output += f"{self.format_keyspace_to_markdown(keyspace, tables)}\n\n" return output
def _validate_cql(self, cql: str, type: str = "SELECT") -> str: """ Validates a CQL query string for basic formatting and safety checks. Ensures that `cql` starts with the specified type (e.g., SELECT) and does not contain content that could indicate CQL injection vulnerabilities. Args: cql: The CQL query string to be validated. type: The expected starting keyword of the query, used to verify that the query begins with the correct operation type (e.g., "SELECT", "UPDATE"). Defaults to "SELECT". Returns: The trimmed and validated CQL query string without a trailing semicolon. Raises: ValueError: If the value of `type` is not supported DatabaseError: If `cql` is considered unsafe """ SUPPORTED_TYPES = ["SELECT"] if type and type.upper() not in SUPPORTED_TYPES: raise ValueError( f"""Unsupported CQL type: {type}. Supported types: {SUPPORTED_TYPES}""" ) # Basic sanity checks cql_trimmed = cql.strip() if not cql_trimmed.upper().startswith(type.upper()): raise DatabaseError(f"CQL must start with {type.upper()}.") # Allow a trailing semicolon, but remove (it is optional with the Python driver) cql_trimmed = cql_trimmed.rstrip(";") # Consider content within matching quotes to be "safe" # Remove single-quoted strings cql_sanitized = re.sub(r"'.*?'", "", cql_trimmed) # Remove double-quoted strings cql_sanitized = re.sub(r'".*?"', "", cql_sanitized) # Find unsafe content in the remaining CQL if ";" in cql_sanitized: raise DatabaseError( """Potentially unsafe CQL, as it contains a ; at a place other than the end or within quotation marks.""" ) # The trimmed query, before modifications return cql_trimmed def _fetch_keyspaces(self, keyspaces: Optional[List[str]] = None) -> List[str]: """ Fetches a list of keyspace names from the Cassandra database. The list can be filtered by a provided list of keyspace names or by excluding predefined keyspaces. Args: keyspaces: A list of keyspace names to specifically include. If provided and not empty, the method returns only the keyspaces present in this list. If not provided or empty, the method returns all keyspaces except those specified in the _exclude_keyspaces attribute. Returns: A list of keyspace names according to the filtering criteria. """ all_keyspaces = self.fetch_all( "SELECT keyspace_name FROM system_schema.keyspaces" ) # Filtering keyspaces based on 'keyspace_list' and '_exclude_keyspaces' filtered_keyspaces = [] for ks in all_keyspaces: if not isinstance(ks, Dict): continue # Skip if the row is not a dictionary. keyspace_name = ks["keyspace_name"] if keyspaces and keyspace_name in keyspaces: filtered_keyspaces.append(keyspace_name) elif not keyspaces and keyspace_name not in self._exclude_keyspaces: filtered_keyspaces.append(keyspace_name) return filtered_keyspaces def _format_keyspace_query(self, query: str, keyspaces: List[str]) -> str: # Construct IN clause for CQL query keyspace_in_clause = ", ".join([f"'{ks}'" for ks in keyspaces]) return f"""{query} WHERE keyspace_name IN ({keyspace_in_clause})""" def _fetch_tables_data(self, keyspaces: List[str]) -> list: """Fetches tables schema data, filtered by a list of keyspaces. This method allows for efficiently fetching schema information for multiple keyspaces in a single operation, enabling applications to programmatically analyze or document the database schema. Args: keyspaces: A list of keyspace names from which to fetch tables schema data. Returns: Dictionaries of table details (keyspace name, table name, and comment). """ tables_query = self._format_keyspace_query( "SELECT keyspace_name, table_name, comment FROM system_schema.tables", keyspaces, ) return self.fetch_all(tables_query) def _fetch_columns_data(self, keyspaces: List[str]) -> list: """Fetches columns schema data, filtered by a list of keyspaces. This method allows for efficiently fetching schema information for multiple keyspaces in a single operation, enabling applications to programmatically analyze or document the database schema. Args: keyspaces: A list of keyspace names from which to fetch tables schema data. Returns: Dictionaries of column details (keyspace name, table name, column name, type, kind, and position). """ tables_query = self._format_keyspace_query( """ SELECT keyspace_name, table_name, column_name, type, kind, clustering_order, position FROM system_schema.columns """, keyspaces, ) return self.fetch_all(tables_query) def _fetch_indexes_data(self, keyspaces: List[str]) -> list: """Fetches indexes schema data, filtered by a list of keyspaces. This method allows for efficiently fetching schema information for multiple keyspaces in a single operation, enabling applications to programmatically analyze or document the database schema. Args: keyspaces: A list of keyspace names from which to fetch tables schema data. Returns: Dictionaries of index details (keyspace name, table name, index name, kind, and options). """ tables_query = self._format_keyspace_query( """ SELECT keyspace_name, table_name, index_name, kind, options FROM system_schema.indexes """, keyspaces, ) return self.fetch_all(tables_query) def _resolve_schema( self, keyspaces: Optional[List[str]] = None ) -> Dict[str, List[Table]]: """ Efficiently fetches and organizes Cassandra table schema information, such as comments, columns, and indexes, into a dictionary mapping keyspace names to lists of Table objects. Args: keyspaces: An optional list of keyspace names from which to fetch tables schema data. Returns: A dictionary with keyspace names as keys and lists of Table objects as values, where each Table object is populated with schema details appropriate for its keyspace and table name. """ if not keyspaces: keyspaces = self._fetch_keyspaces() tables_data = self._fetch_tables_data(keyspaces) columns_data = self._fetch_columns_data(keyspaces) indexes_data = self._fetch_indexes_data(keyspaces) keyspace_dict: dict = {} for table_data in tables_data: keyspace = table_data.keyspace_name table_name = table_data.table_name comment = table_data.comment if self._include_tables and table_name not in self._include_tables: continue if self._exclude_tables and table_name in self._exclude_tables: continue # Filter columns and indexes for this table table_columns = [ (c.column_name, c.type) for c in columns_data if c.keyspace_name == keyspace and c.table_name == table_name ] partition_keys = [ c.column_name for c in columns_data if c.kind == "partition_key" and c.keyspace_name == keyspace and c.table_name == table_name ] clustering_keys = [ (c.column_name, c.clustering_order) for c in columns_data if c.kind == "clustering" and c.keyspace_name == keyspace and c.table_name == table_name ] table_indexes = [ (c.index_name, c.kind, c.options) for c in indexes_data if c.keyspace_name == keyspace and c.table_name == table_name ] table_obj = Table( keyspace=keyspace, table_name=table_name, comment=comment, columns=table_columns, partition=partition_keys, clustering=clustering_keys, indexes=table_indexes, ) if keyspace not in keyspace_dict: keyspace_dict[keyspace] = [] keyspace_dict[keyspace].append(table_obj) return keyspace_dict @staticmethod def _resolve_session( session: Optional[Session] = None, cassio_init_kwargs: Optional[Dict[str, Any]] = None, ) -> Optional[Session]: """ Attempts to resolve and return a Session object for use in database operations. This function follows a specific order of precedence to determine the appropriate session to use: 1. `session` parameter if given, 2. Existing `cassio` session, 3. A new `cassio` session derived from `cassio_init_kwargs`, 4. `None` Args: session: An optional session to use directly. cassio_init_kwargs: An optional dictionary of keyword arguments to `cassio`. Returns: The resolved session object if successful, or `None` if the session cannot be resolved. Raises: ValueError: If `cassio_init_kwargs` is provided but is not a dictionary of keyword arguments. """ # Prefer given session if session: return session # If a session is not provided, create one using cassio if available # dynamically import cassio to avoid circular imports try: import cassio.config except ImportError: raise ValueError( "cassio package not found, please install with" " `pip install cassio`" ) # Use pre-existing session on cassio s = cassio.config.resolve_session() if s: return s # Try to init and return cassio session if cassio_init_kwargs: if isinstance(cassio_init_kwargs, dict): cassio.init(**cassio_init_kwargs) s = cassio.config.check_resolve_session() return s else: raise ValueError("cassio_init_kwargs must be a keyword dictionary") # return None if we're not able to resolve return None
[docs] class DatabaseError(Exception): """Exception raised for errors in the database schema. Attributes: message -- explanation of the error """ def __init__(self, message: str): self.message = message super().__init__(self.message)
[docs] class Table(BaseModel): keyspace: str """The keyspace in which the table exists.""" table_name: str """The name of the table.""" comment: Optional[str] = None """The comment associated with the table.""" columns: List[Tuple[str, str]] = Field(default_factory=list) partition: List[str] = Field(default_factory=list) clustering: List[Tuple[str, str]] = Field(default_factory=list) indexes: List[Tuple[str, str, str]] = Field(default_factory=list) model_config = ConfigDict( frozen=True, ) @model_validator(mode="after") def check_required_fields(self) -> Self: if not self.columns: raise ValueError("non-empty column list for must be provided") if not self.partition: raise ValueError("non-empty partition list must be provided") return self
[docs] @classmethod def from_database( cls, keyspace: str, table_name: str, db: CassandraDatabase ) -> Table: columns, partition, clustering = cls._resolve_columns(keyspace, table_name, db) return cls( keyspace=keyspace, table_name=table_name, comment=cls._resolve_comment(keyspace, table_name, db), columns=columns, partition=partition, clustering=clustering, indexes=cls._resolve_indexes(keyspace, table_name, db), )
[docs] def as_markdown( self, include_keyspace: bool = True, header_level: Optional[int] = None ) -> str: """ Generates a Markdown representation of the Cassandra table schema, allowing for customizable header levels for the table name section. Args: include_keyspace: If True, includes the keyspace in the output. Defaults to True. header_level: Specifies the markdown header level for the table name. If None, the table name is included without a header. Defaults to None (no header level). Returns: A string in Markdown format detailing the table name (with optional header level), keyspace (optional), comment, columns, partition keys, clustering keys (with optional clustering order), and indexes. """ output = "" if header_level is not None: output += f"{'#' * header_level} " output += f"Table Name: {self.table_name}\n" if include_keyspace: output += f"- Keyspace: {self.keyspace}\n" if self.comment: output += f"- Comment: {self.comment}\n" output += "- Columns\n" for column, type in self.columns: output += f" - {column} ({type})\n" output += f"- Partition Keys: ({', '.join(self.partition)})\n" output += "- Clustering Keys: " if self.clustering: cluster_list = [] for column, clustering_order in self.clustering: if clustering_order.lower() == "none": cluster_list.append(column) else: cluster_list.append(f"{column} {clustering_order}") output += f"({', '.join(cluster_list)})\n" if self.indexes: output += "- Indexes\n" for name, kind, options in self.indexes: output += f" - {name} : kind={kind}, options={options}\n" return output
@staticmethod def _resolve_comment( keyspace: str, table_name: str, db: CassandraDatabase ) -> Optional[str]: result = db.run( f"""SELECT comment FROM system_schema.tables WHERE keyspace_name = '{keyspace}' AND table_name = '{table_name}';""", fetch="one", ) if isinstance(result, dict): comment = result.get("comment") if comment: return comment else: return None # Default comment if none is found else: raise ValueError( f"""Unexpected result type from db.run: {type(result).__name__}""" ) @staticmethod def _resolve_columns( keyspace: str, table_name: str, db: CassandraDatabase ) -> Tuple[List[Tuple[str, str]], List[str], List[Tuple[str, str]]]: columns = [] partition_info = [] cluster_info = [] results = db.run( f"""SELECT column_name, type, kind, clustering_order, position FROM system_schema.columns WHERE keyspace_name = '{keyspace}' AND table_name = '{table_name}';""" ) # Type check to ensure 'results' is a sequence of dictionaries. if not isinstance(results, Sequence): raise TypeError("Expected a sequence of dictionaries from 'run' method.") for row in results: if not isinstance(row, Dict): continue # Skip if the row is not a dictionary. columns.append((row["column_name"], row["type"])) if row["kind"] == "partition_key": partition_info.append((row["column_name"], row["position"])) elif row["kind"] == "clustering": cluster_info.append( (row["column_name"], row["clustering_order"], row["position"]) ) partition = [ column_name for column_name, _ in sorted(partition_info, key=lambda x: x[1]) ] cluster = [ (column_name, clustering_order) for column_name, clustering_order, _ in sorted( cluster_info, key=lambda x: x[2] ) ] return columns, partition, cluster @staticmethod def _resolve_indexes( keyspace: str, table_name: str, db: CassandraDatabase ) -> List[Tuple[str, str, str]]: indexes = [] results = db.run( f"""SELECT index_name, kind, options FROM system_schema.indexes WHERE keyspace_name = '{keyspace}' AND table_name = '{table_name}';""" ) # Type check to ensure 'results' is a sequence of dictionaries if not isinstance(results, Sequence): raise TypeError("Expected a sequence of dictionaries from 'run' method.") for row in results: if not isinstance(row, Dict): continue # Skip if the row is not a dictionary. # Convert 'options' to string if it's not already, # assuming it's JSON-like and needs conversion index_options = row["options"] if not isinstance(index_options, str): # Assuming index_options needs to be serialized or simply converted index_options = str(index_options) indexes.append((row["index_name"], row["kind"], index_options)) return indexes