Source code for langchain_community.utilities.dalle_image_generator

"""Utility that calls OpenAI's Dall-E Image Generator."""

import logging
from typing import Any, Dict, Mapping, Optional, Tuple, Union

from langchain_core.utils import (
    from_env,
    get_pydantic_field_names,
    secret_from_env,
)
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self

from langchain_community.utils.openai import is_openai_v1

logger = logging.getLogger(__name__)


[docs] class DallEAPIWrapper(BaseModel): """Wrapper for OpenAI's DALL-E Image Generator. https://platform.openai.com/docs/guides/images/generations?context=node Usage instructions: 1. `pip install openai` 2. save your OPENAI_API_KEY in an environment variable """ client: Any = None #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="dall-e-2", alias="model") model_kwargs: Dict[str, Any] = Field(default_factory=dict) openai_api_key: SecretStr = Field( alias="api_key", default_factory=secret_from_env( "OPENAI_API_KEY", default=None, ), ) """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_api_base: Optional[str] = Field( alias="base_url", default_factory=from_env("OPENAI_API_BASE", default=None) ) """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_organization: Optional[str] = Field( alias="organization", default_factory=from_env( ["OPENAI_ORG_ID", "OPENAI_ORGANIZATION"], default=None ), ) """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" # to support explicit proxy for OpenAI openai_proxy: str = Field(default_factory=from_env("OPENAI_PROXY", default="")) request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) n: int = 1 """Number of images to generate""" size: str = "1024x1024" """Size of image to generate""" separator: str = "\n" """Separator to use when multiple URLs are returned.""" quality: Optional[str] = "standard" """Quality of the image that will be generated""" max_retries: int = 2 """Maximum number of retries to make when generating.""" default_headers: Union[Mapping[str, str], None] = None default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. http_client: Union[Any, None] = None """Optional httpx.Client.""" model_config = ConfigDict(extra="forbid", protected_namespaces=()) @model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @model_validator(mode="after") def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): client_params = { "api_key": self.openai_api_key.get_secret_value() if self.openai_api_key else None, "organization": self.openai_organization, "base_url": self.openai_api_base, "timeout": self.request_timeout, "max_retries": self.max_retries, "default_headers": self.default_headers, "default_query": self.default_query, "http_client": self.http_client, } if not self.client: self.client = openai.OpenAI(**client_params).images # type: ignore[arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type] if not self.async_client: self.async_client = openai.AsyncOpenAI(**client_params).images # type: ignore[arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type] elif not self.client: self.client = openai.Image # type: ignore[attr-defined] else: pass return self
[docs] def run(self, query: str) -> str: """Run query through OpenAI and parse result.""" if is_openai_v1(): response = self.client.generate( prompt=query, n=self.n, size=self.size, model=self.model_name, quality=self.quality, ) image_urls = self.separator.join([item.url for item in response.data]) else: response = self.client.create( prompt=query, n=self.n, size=self.size, model=self.model_name ) image_urls = self.separator.join([item["url"] for item in response["data"]]) return image_urls if image_urls else "No image was generated"