Source code for langchain_community.utilities.searchapi

from typing import Any, Dict, Optional

import aiohttp
import requests
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, model_validator


[docs] class SearchApiAPIWrapper(BaseModel): """ Wrapper around SearchApi API. To use, you should have the environment variable ``SEARCHAPI_API_KEY`` set with your API key, or pass `searchapi_api_key` as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.utilities import SearchApiAPIWrapper searchapi = SearchApiAPIWrapper() """ # Use "google" engine by default. # Full list of supported ones can be found in https://www.searchapi.io docs engine: str = "google" searchapi_api_key: Optional[str] = None aiosession: Optional[aiohttp.ClientSession] = None model_config = ConfigDict( arbitrary_types_allowed=True, ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that API key exists in environment.""" searchapi_api_key = get_from_dict_or_env( values, "searchapi_api_key", "SEARCHAPI_API_KEY" ) values["searchapi_api_key"] = searchapi_api_key return values
[docs] def run(self, query: str, **kwargs: Any) -> str: results = self.results(query, **kwargs) return self._result_as_string(results)
[docs] async def arun(self, query: str, **kwargs: Any) -> str: results = await self.aresults(query, **kwargs) return self._result_as_string(results)
[docs] def results(self, query: str, **kwargs: Any) -> dict: results = self._search_api_results(query, **kwargs) return results
[docs] async def aresults(self, query: str, **kwargs: Any) -> dict: results = await self._async_search_api_results(query, **kwargs) return results
def _prepare_request(self, query: str, **kwargs: Any) -> dict: return { "url": "https://www.searchapi.io/api/v1/search", "headers": { "Authorization": f"Bearer {self.searchapi_api_key}", }, "params": { "engine": self.engine, "q": query, **{key: value for key, value in kwargs.items() if value is not None}, }, } def _search_api_results(self, query: str, **kwargs: Any) -> dict: request_details = self._prepare_request(query, **kwargs) response = requests.get( url=request_details["url"], params=request_details["params"], headers=request_details["headers"], ) response.raise_for_status() return response.json() async def _async_search_api_results(self, query: str, **kwargs: Any) -> dict: """Use aiohttp to send request to SearchApi API and return results async.""" request_details = self._prepare_request(query, **kwargs) if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.get( url=request_details["url"], headers=request_details["headers"], params=request_details["params"], raise_for_status=True, ) as response: results = await response.json() else: async with self.aiosession.get( url=request_details["url"], headers=request_details["headers"], params=request_details["params"], raise_for_status=True, ) as response: results = await response.json() return results @staticmethod def _result_as_string(result: dict) -> str: toret = "No good search result found" if "answer_box" in result.keys() and "answer" in result["answer_box"].keys(): toret = result["answer_box"]["answer"] elif "answer_box" in result.keys() and "snippet" in result["answer_box"].keys(): toret = result["answer_box"]["snippet"] elif "knowledge_graph" in result.keys(): toret = result["knowledge_graph"]["description"] elif "organic_results" in result.keys(): snippets = [ r["snippet"] for r in result["organic_results"] if "snippet" in r.keys() ] toret = "\n".join(snippets) elif "jobs" in result.keys(): jobs = [ r["description"] for r in result["jobs"] if "description" in r.keys() ] toret = "\n".join(jobs) elif "videos" in result.keys(): videos = [ f"""Title: "{r["title"]}" Link: {r["link"]}""" for r in result["videos"] if "title" in r.keys() ] toret = "\n".join(videos) elif "images" in result.keys(): images = [ f"""Title: "{r["title"]}" Link: {r["original"]["link"]}""" for r in result["images"] if "original" in r.keys() ] toret = "\n".join(images) return toret