Source code for langchain_community.vectorstores.baiducloud_vector_search

import logging
import uuid
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
    Union,
)

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

if TYPE_CHECKING:
    from elasticsearch import Elasticsearch

logger = logging.getLogger(__name__)


[docs] class BESVectorStore(VectorStore): """`Baidu Elasticsearch` vector store. Example: .. code-block:: python from langchain_community.vectorstores import BESVectorStore from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = BESVectorStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", bes_url="http://localhost:9200" ) Args: index_name: Name of the Elasticsearch index to create. bes_url: URL of the Baidu Elasticsearch instance to connect to. user: Username to use when connecting to Elasticsearch. password: Password to use when connecting to Elasticsearch. More information can be obtained from: https://cloud.baidu.com/doc/BES/s/8llyn0hh4 """
[docs] def __init__( self, index_name: str, bes_url: str, user: Optional[str] = None, password: Optional[str] = None, embedding: Optional[Embeddings] = None, **kwargs: Optional[dict], ) -> None: self.embedding = embedding self.index_name = index_name self.query_field = kwargs.get("query_field", "text") self.vector_query_field = kwargs.get("vector_query_field", "vector") self.space_type = kwargs.get("space_type", "cosine") self.index_type = kwargs.get("index_type", "linear") self.index_params = kwargs.get("index_params") or {} if bes_url is not None: self.client = BESVectorStore.bes_client( bes_url=bes_url, username=user, password=password ) else: raise ValueError("""Please specified a bes connection url.""")
@property def embeddings(self) -> Optional[Embeddings]: return self.embedding
[docs] @staticmethod def bes_client( *, bes_url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, ) -> "Elasticsearch": try: import elasticsearch except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) connection_params: Dict[str, Any] = {} connection_params["hosts"] = [bes_url] if username and password: connection_params["basic_auth"] = (username, password) es_client = elasticsearch.Elasticsearch(**connection_params) try: es_client.info() except Exception as e: logger.error(f"Error connecting to Elasticsearch: {e}") raise e return es_client
def _create_index_if_not_exists(self, dims_length: Optional[int] = None) -> None: """Create the index if it doesn't already exist. Args: dims_length: Length of the embedding vectors. """ if self.client.indices.exists(index=self.index_name): logger.info(f"Index {self.index_name} already exists. Skipping creation.") else: if dims_length is None: raise ValueError( "Cannot create index without specifying dims_length " + "when the index doesn't already exist. " ) indexMapping = self._index_mapping(dims_length=dims_length) logger.debug( f"Creating index {self.index_name} with mappings {indexMapping}" ) self.client.indices.create( index=self.index_name, body={ "settings": {"index": {"knn": True}}, "mappings": {"properties": indexMapping}, }, ) def _index_mapping(self, dims_length: Union[int, None]) -> Dict: """ Executes when the index is created. Args: dims_length: Numeric length of the embedding vectors, or None if not using vector-based query. index_params: The extra pamameters for creating index. Returns: Dict: The Elasticsearch settings and mappings for the strategy. """ if "linear" == self.index_type: return { self.vector_query_field: { "type": "bpack_vector", "dims": dims_length, "build_index": self.index_params.get("build_index", False), } } elif "hnsw" == self.index_type: return { self.vector_query_field: { "type": "bpack_vector", "dims": dims_length, "index_type": "hnsw", "space_type": self.space_type, "parameters": { "ef_construction": self.index_params.get( "hnsw_ef_construction", 200 ), "m": self.index_params.get("hnsw_m", 4), }, } } else: return { self.vector_query_field: { "type": "bpack_vector", "model_id": self.index_params.get("model_id", ""), } }
[docs] def delete( self, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Optional[bool]: """Delete documents from the index. Args: ids: List of ids of documents to delete """ try: from elasticsearch.helpers import BulkIndexError, bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) body = [] if ids is None: raise ValueError("ids must be provided.") for _id in ids: body.append({"_op_type": "delete", "_index": self.index_name, "_id": _id}) if len(body) > 0: try: bulk( self.client, body, refresh=kwargs.get("refresh_indices", True), ignore_status=404, ) logger.debug(f"Deleted {len(body)} texts from index") return True except BulkIndexError as e: logger.error(f"Error deleting texts: {e}") raise e else: logger.info("No documents to delete") return False
def _query_body( self, query_vector: Union[List[float], None], filter: Optional[dict] = None, search_params: Dict = {}, ) -> Dict: query_vector_body = {"vector": query_vector, "k": search_params.get("k", 2)} if filter is not None and len(filter) != 0: query_vector_body["filter"] = filter if "linear" == self.index_type: query_vector_body["linear"] = True else: query_vector_body["ef"] = search_params.get("ef", 10) return { "size": search_params.get("size", 4), "query": {"knn": {self.vector_query_field: query_vector_body}}, } def _search( self, query: Optional[str] = None, query_vector: Union[List[float], None] = None, filter: Optional[dict] = None, custom_query: Optional[Callable[[Dict, Union[str, None]], Dict]] = None, search_params: Dict = {}, ) -> List[Tuple[Document, float]]: """Return searched documents result from BES Args: query: Text to look up documents similar to. query_vector: Embedding to look up documents similar to. filter: Array of Baidu ElasticSearch filter clauses to apply to the query. custom_query: Function to modify the query body before it is sent to BES. Returns: List of Documents most similar to the query and score for each """ if self.embedding and query is not None: query_vector = self.embedding.embed_query(query) query_body = self._query_body( query_vector=query_vector, filter=filter, search_params=search_params ) if custom_query is not None: query_body = custom_query(query_body, query) logger.debug(f"Calling custom_query, Query body now: {query_body}") logger.debug(f"Query body: {query_body}") # Perform the kNN search on the BES index and return the results. response = self.client.search(index=self.index_name, body=query_body) logger.debug(f"response={response}") hits = [hit for hit in response["hits"]["hits"]] docs_and_scores = [ ( Document( page_content=hit["_source"][self.query_field], metadata=hit["_source"]["metadata"], ), hit["_score"], ) for hit in hits ] return docs_and_scores
[docs] def similarity_search_with_score( self, query: str, k: int, filter: Optional[dict] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return documents most similar to query, along with scores. Args: query: Text to look up documents similar to. size: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the query and score for each """ search_params = kwargs.get("search_params") or {} if len(search_params) == 0 or search_params.get("size") is None: search_params["size"] = k return self._search(query=query, filter=filter, **kwargs)
[docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, **kwargs: Any, ) -> "BESVectorStore": """Construct BESVectorStore wrapper from documents. Args: documents: List of documents to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. Do not provide if using a strategy that doesn't require inference. kwargs: create index key words arguments """ vectorStore = BESVectorStore._bes_vector_store(embedding=embedding, **kwargs) # Encode the provided texts and add them to the newly created index. vectorStore.add_documents(documents) return vectorStore
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any, ) -> "BESVectorStore": """Construct BESVectorStore wrapper from raw documents. Args: texts: List of texts to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. metadatas: Optional list of metadatas associated with the texts. index_name: Name of the Elasticsearch index to create. kwargs: create index key words arguments """ vectorStore = BESVectorStore._bes_vector_store(embedding=embedding, **kwargs) # Encode the provided texts and add them to the newly created index. vectorStore.add_texts(texts, metadatas=metadatas, **kwargs) return vectorStore
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ try: from elasticsearch.helpers import BulkIndexError, bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) embeddings = [] create_index_if_not_exists = kwargs.get("create_index_if_not_exists", True) ids = kwargs.get("ids", [str(uuid.uuid4()) for _ in texts]) refresh_indices = kwargs.get("refresh_indices", True) requests = [] if self.embedding is not None: embeddings = self.embedding.embed_documents(list(texts)) dims_length = len(embeddings[0]) if create_index_if_not_exists: self._create_index_if_not_exists(dims_length=dims_length) for i, (text, vector) in enumerate(zip(texts, embeddings)): metadata = metadatas[i] if metadatas else {} requests.append( { "_op_type": "index", "_index": self.index_name, self.query_field: text, self.vector_query_field: vector, "metadata": metadata, "_id": ids[i], } ) else: if create_index_if_not_exists: self._create_index_if_not_exists() for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} requests.append( { "_op_type": "index", "_index": self.index_name, self.query_field: text, "metadata": metadata, "_id": ids[i], } ) if len(requests) > 0: try: success, failed = bulk( self.client, requests, stats_only=True, refresh=refresh_indices ) logger.debug( f"Added {success} and failed to add {failed} texts to index" ) logger.debug(f"added texts {ids} to index") return ids except BulkIndexError as e: logger.error(f"Error adding texts: {e}") firstError = e.errors[0].get("index", {}).get("error", {}) logger.error(f"First error reason: {firstError.get('reason')}") raise e else: logger.debug("No texts to add to index") return []
@staticmethod def _bes_vector_store( embedding: Optional[Embeddings] = None, **kwargs: Any ) -> "BESVectorStore": index_name = kwargs.get("index_name") if index_name is None: raise ValueError("Please provide an index_name.") bes_url = kwargs.get("bes_url") if bes_url is None: raise ValueError("Please provided a valid bes connection url") return BESVectorStore(embedding=embedding, **kwargs)