Source code for langchain_community.vectorstores.docarray.in_memory
"""Wrapper around in-memory storage."""
from __future__ import annotations
from typing import Any, Dict, List, Literal, Optional
from langchain_core.embeddings import Embeddings
from langchain_community.vectorstores.docarray.base import (
DocArrayIndex,
_check_docarray_import,
)
[docs]
class DocArrayInMemorySearch(DocArrayIndex):
"""In-memory `DocArray` storage for exact search.
To use it, you should have the ``docarray`` package with version >=0.32.0 installed.
You can install it with `pip install docarray`.
"""
[docs]
@classmethod
def from_params(
cls,
embedding: Embeddings,
metric: Literal[
"cosine_sim", "euclidian_dist", "sgeuclidean_dist"
] = "cosine_sim",
**kwargs: Any,
) -> DocArrayInMemorySearch:
"""Initialize DocArrayInMemorySearch store.
Args:
embedding (Embeddings): Embedding function.
metric (str): metric for exact nearest-neighbor search.
Can be one of: "cosine_sim", "euclidean_dist" and "sqeuclidean_dist".
Defaults to "cosine_sim".
**kwargs: Other keyword arguments to be passed to the get_doc_cls method.
"""
_check_docarray_import()
from docarray.index import InMemoryExactNNIndex
doc_cls = cls._get_doc_cls(space=metric, **kwargs)
doc_index = InMemoryExactNNIndex[doc_cls]() # type: ignore
return cls(doc_index, embedding)
[docs]
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict[Any, Any]]] = None,
**kwargs: Any,
) -> DocArrayInMemorySearch:
"""Create an DocArrayInMemorySearch store and insert data.
Args:
texts (List[str]): Text data.
embedding (Embeddings): Embedding function.
metadatas (Optional[List[Dict[Any, Any]]]): Metadata for each text
if it exists. Defaults to None.
**kwargs: Other keyword arguments to be passed to the from_params method.
Returns:
DocArrayInMemorySearch Vector Store
"""
store = cls.from_params(embedding, **kwargs)
store.add_texts(texts=texts, metadatas=metadatas)
return store