"""Module providing Infinispan as a VectorStore"""
from __future__ import annotations
import json
import logging
import uuid
import warnings
from typing import Any, Iterable, List, Optional, Tuple, Type, Union, cast
from httpx import Response
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
logger = logging.getLogger(__name__)
[docs]
class InfinispanVS(VectorStore):
"""`Infinispan` VectorStore interface.
This class exposes the method to present Infinispan as a
VectorStore. It relies on the Infinispan class (below) which takes care
of the REST interface with the server.
Example:
... code-block:: python
from langchain_community.vectorstores import InfinispanVS
from mymodels import RGBEmbeddings
...
vectorDb = InfinispanVS.from_documents(docs,
embedding=RGBEmbeddings(),
output_fields=["texture", "color"],
lambda_key=lambda text,meta: str(meta["_key"]),
lambda_content=lambda item: item["color"])
or an empty InfinispanVS instance can be created if preliminary setup
is required before populating the store
... code-block:: python
from langchain_community.vectorstores import InfinispanVS
from mymodels import RGBEmbeddings
...
ispnVS = InfinispanVS()
# configure Infinispan here
# i.e. create cache and schema
# then populate the store
vectorDb = InfinispanVS.from_documents(docs,
embedding=RGBEmbeddings(),
output_fields: ["texture", "color"],
lambda_key: lambda text,meta: str(meta["_key"]),
lambda_content: lambda item: item["color"])
"""
[docs]
def __init__(
self,
embedding: Optional[Embeddings] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
):
"""
Parameters
----------
cache_name: str
Embeddings cache name. Default "vector"
entity_name: str
Protobuf entity name for the embeddings. Default "vector"
text_field: str
Protobuf field name for text. Default "text"
vector_field: str
Protobuf field name for vector. Default "vector"
lambda_content: lambda
Lambda returning the content part of an item. Default returns text_field
lambda_metadata: lambda
Lambda returning the metadata part of an item. Default returns items
fields excepts text_field, vector_field, _type
output_fields: List[str]
List of fields to be returned from item, if None return all fields.
Default None
kwargs: Any
Rest of arguments passed to Infinispan. See docs"""
self.ispn = Infinispan(**kwargs)
self._configuration = kwargs
self._cache_name = str(self._configuration.get("cache_name", "vector"))
self._entity_name = str(self._configuration.get("entity_name", "vector"))
self._embedding = embedding
self._textfield = self._configuration.get("textfield", "")
if self._textfield == "":
self._textfield = self._configuration.get("text_field", "text")
else:
warnings.warn(
"`textfield` is deprecated. Please use `text_field` " "param.",
DeprecationWarning,
)
self._vectorfield = self._configuration.get("vectorfield", "")
if self._vectorfield == "":
self._vectorfield = self._configuration.get("vector_field", "vector")
else:
warnings.warn(
"`vectorfield` is deprecated. Please use `vector_field` " "param.",
DeprecationWarning,
)
self._to_content = self._configuration.get(
"lambda_content", lambda item: self._default_content(item)
)
self._to_metadata = self._configuration.get(
"lambda_metadata", lambda item: self._default_metadata(item)
)
self._output_fields = self._configuration.get("output_fields")
self._ids = ids
def _default_metadata(self, item: dict) -> dict:
meta = dict(item)
meta.pop(self._vectorfield, None)
meta.pop(self._textfield, None)
meta.pop("_type", None)
return meta
def _default_content(self, item: dict[str, Any]) -> Any:
return item.get(self._textfield)
[docs]
def schema_builder(self, templ: dict, dimension: int) -> str:
metadata_proto_tpl = """
/**
* @Indexed
*/
message %s {
/**
* @Vector(dimension=%d)
*/
repeated float %s = 1;
"""
metadata_proto = metadata_proto_tpl % (
self._entity_name,
dimension,
self._vectorfield,
)
idx = 2
for f, v in templ.items():
if isinstance(v, str):
metadata_proto += "optional string " + f + " = " + str(idx) + ";\n"
elif isinstance(v, int):
metadata_proto += "optional int64 " + f + " = " + str(idx) + ";\n"
elif isinstance(v, float):
metadata_proto += "optional double " + f + " = " + str(idx) + ";\n"
elif isinstance(v, bytes):
metadata_proto += "optional bytes " + f + " = " + str(idx) + ";\n"
elif isinstance(v, bool):
metadata_proto += "optional bool " + f + " = " + str(idx) + ";\n"
else:
raise Exception(
"Unable to build proto schema for metadata. "
"Unhandled type for field: " + f
)
idx += 1
metadata_proto += "}\n"
return metadata_proto
[docs]
def schema_create(self, proto: str) -> Response:
"""Deploy the schema for the vector db
Args:
proto(str): protobuf schema
Returns:
An http Response containing the result of the operation
"""
return self.ispn.schema_post(self._entity_name + ".proto", proto)
[docs]
def schema_delete(self) -> Response:
"""Delete the schema for the vector db
Returns:
An http Response containing the result of the operation
"""
return self.ispn.schema_delete(self._entity_name + ".proto")
[docs]
def cache_create(self, config: str = "") -> Response:
"""Create the cache for the vector db
Args:
config(str): configuration of the cache.
Returns:
An http Response containing the result of the operation
"""
if config == "":
config = (
'''
{
"distributed-cache": {
"owners": "2",
"mode": "SYNC",
"statistics": true,
"encoding": {
"media-type": "application/x-protostream"
},
"indexing": {
"enabled": true,
"storage": "filesystem",
"startup-mode": "AUTO",
"indexing-mode": "AUTO",
"indexed-entities": [
"'''
+ self._entity_name
+ """"
]
}
}
}
"""
)
return self.ispn.cache_post(self._cache_name, config)
[docs]
def cache_delete(self) -> Response:
"""Delete the cache for the vector db
Returns:
An http Response containing the result of the operation
"""
return self.ispn.cache_delete(self._cache_name)
[docs]
def cache_clear(self) -> Response:
"""Clear the cache for the vector db
Returns:
An http Response containing the result of the operation
"""
return self.ispn.cache_clear(self._cache_name)
[docs]
def cache_exists(self) -> bool:
"""Checks if the cache exists
Returns:
true if exists
"""
return self.ispn.cache_exists(self._cache_name)
[docs]
def cache_index_clear(self) -> Response:
"""Clear the index for the vector db
Returns:
An http Response containing the result of the operation
"""
return self.ispn.index_clear(self._cache_name)
[docs]
def cache_index_reindex(self) -> Response:
"""Rebuild the for the vector db
Returns:
An http Response containing the result of the operation
"""
return self.ispn.index_reindex(self._cache_name)
[docs]
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
last_vector: Optional[List[float]] = None,
**kwargs: Any,
) -> List[str]:
result = []
texts_l = list(texts)
if last_vector:
texts_l.pop()
embeds = self._embedding.embed_documents(texts_l) # type: ignore
if last_vector:
embeds.append(last_vector)
if not metadatas:
metadatas = [{} for _ in texts]
ids = self._ids or [str(uuid.uuid4()) for _ in texts]
data_input = list(zip(metadatas, embeds, ids))
for metadata, embed, key in data_input:
data = {"_type": self._entity_name, self._vectorfield: embed}
data.update(metadata)
data_str = json.dumps(data)
self.ispn.put(key, data_str, self._cache_name)
result.append(key)
return result
[docs]
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query."""
documents = self.similarity_search_with_score(query=query, k=k)
return [doc for doc, _ in documents]
[docs]
def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results with score.
Args:
query (str): The text being searched.
k (int, optional): The amount of results to return. Defaults to 4.
Returns:
List[Tuple[Document, float]]
"""
embed = self._embedding.embed_query(query) # type: ignore
documents = self.similarity_search_with_score_by_vector(embedding=embed, k=k)
return documents
[docs]
def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
res = self.similarity_search_with_score_by_vector(embedding, k)
return [doc for doc, _ in res]
[docs]
def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of pair (Documents, score) most similar to the query vector.
"""
if self._output_fields is None:
query_str = (
"select v, score(v) from "
+ self._entity_name
+ " v where v."
+ self._vectorfield
+ " <-> "
+ json.dumps(embedding)
+ "~"
+ str(k)
)
else:
query_proj = "select "
for field in self._output_fields[:-1]:
query_proj = query_proj + "v." + field + ","
query_proj = query_proj + "v." + self._output_fields[-1]
query_str = (
query_proj
+ ", score(v) from "
+ self._entity_name
+ " v where v."
+ self._vectorfield
+ " <-> "
+ json.dumps(embedding)
+ "~"
+ str(k)
)
query_res = self.ispn.req_query(query_str, self._cache_name)
result = json.loads(query_res.text)
return self._query_result_to_docs(result)
def _query_result_to_docs(
self, result: dict[str, Any]
) -> List[Tuple[Document, float]]:
documents = []
for row in result["hits"]:
hit = row["hit"] or {}
if self._output_fields is None:
entity = hit["*"]
else:
entity = {key: hit.get(key) for key in self._output_fields}
doc = Document(
page_content=self._to_content(entity),
metadata=self._to_metadata(entity),
)
documents.append((doc, hit["score()"]))
return documents
[docs]
def config_clear(self) -> None:
self.schema_delete()
self.cache_delete()
[docs]
@classmethod
def from_texts(
cls: Type[InfinispanVS],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
clear_old: Optional[bool] = True,
auto_config: Optional[bool] = True,
**kwargs: Any,
) -> InfinispanVS:
"""Return VectorStore initialized from texts and embeddings.
In addition to parameters described by the super method, this
implementation provides other configuration params if different
configuration from default is needed.
Parameters
----------
ids : List[str]
Additional list of keys associated to the embedding. If not
provided UUIDs will be generated
clear_old : bool
Whether old data must be deleted. Default True
auto_config: bool
Whether to do a complete server setup (caches,
protobuf definition...). Default True
kwargs: Any
Rest of arguments passed to InfinispanVS. See docs"""
infinispanvs = cls(embedding=embedding, ids=ids, **kwargs)
if auto_config and len(metadatas or []) > 0:
if clear_old:
infinispanvs.config_clear()
vec = embedding.embed_query(texts[len(texts) - 1])
metadatas = cast(List[dict], metadatas)
infinispanvs.configure(metadatas[0], len(vec))
else:
if clear_old:
infinispanvs.cache_clear()
vec = embedding.embed_query(texts[len(texts) - 1])
if texts:
infinispanvs.add_texts(texts, metadatas, vector=vec)
return infinispanvs
REST_TIMEOUT = 10
[docs]
class Infinispan:
"""Helper class for `Infinispan` REST interface.
This class exposes the Infinispan operations needed to
create and set up a vector db.
You need a running Infinispan (15+) server without authentication.
You can easily start one, see:
https://github.com/rigazilla/infinispan-vector#run-infinispan
"""
[docs]
def __init__(
self,
schema: str = "http",
user: str = "",
password: str = "",
hosts: List[str] = ["127.0.0.1:11222"],
cache_url: str = "/rest/v2/caches",
schema_url: str = "/rest/v2/schemas",
use_post_for_query: bool = True,
http2: bool = True,
verify: bool = True,
**kwargs: Any,
):
"""
Parameters
----------
schema: str
Schema for HTTP request: "http" or "https". Default "http"
user, password: str
User and password if auth is required. Default None
hosts: List[str]
List of server addresses. Default ["127.0.0.1:11222"]
cache_url: str
URL endpoint for cache API. Default "/rest/v2/caches"
schema_url: str
URL endpoint for schema API. Default "/rest/v2/schemas"
use_post_for_query: bool
Whether POST method should be used for query. Default True
http2: bool
Whether HTTP/2 protocol should be used. `pip install "httpx[http2]"` is
needed for HTTP/2. Default True
verify: bool
Whether TLS certificate must be verified. Default True
"""
try:
import httpx
except ImportError:
raise ImportError(
"Could not import httpx python package. "
"Please install it with `pip install httpx`"
'or `pip install "httpx[http2]"` if you need HTTP/2.'
)
self.Codes = httpx.codes
self._configuration = kwargs
self._schema = schema
self._user = user
self._password = password
self._host = hosts[0]
self._default_node = self._schema + "://" + self._host
self._cache_url = cache_url
self._schema_url = schema_url
self._use_post_for_query = use_post_for_query
self._http2 = http2
if self._user and self._password:
if self._schema == "http":
auth: Union[Tuple[str, str], httpx.DigestAuth] = httpx.DigestAuth(
username=self._user, password=self._password
)
else:
auth = (self._user, self._password)
self._h2c = httpx.Client(
http2=self._http2,
http1=not self._http2,
auth=auth,
verify=verify,
)
else:
self._h2c = httpx.Client(
http2=self._http2,
http1=not self._http2,
verify=verify,
)
[docs]
def req_query(self, query: str, cache_name: str, local: bool = False) -> Response:
"""Request a query
Args:
query(str): query requested
cache_name(str): name of the target cache
local(boolean): whether the query is local to clustered
Returns:
An http Response containing the result set or errors
"""
if self._use_post_for_query:
return self._query_post(query, cache_name, local)
return self._query_get(query, cache_name, local)
def _query_post(
self, query_str: str, cache_name: str, local: bool = False
) -> Response:
api_url = (
self._default_node
+ self._cache_url
+ "/"
+ cache_name
+ "?action=search&local="
+ str(local)
)
data = {"query": query_str}
data_json = json.dumps(data)
response = self._h2c.post(
api_url,
content=data_json,
headers={"Content-Type": "application/json"},
timeout=REST_TIMEOUT,
)
return response
def _query_get(
self, query_str: str, cache_name: str, local: bool = False
) -> Response:
api_url = (
self._default_node
+ self._cache_url
+ "/"
+ cache_name
+ "?action=search&query="
+ query_str
+ "&local="
+ str(local)
)
response = self._h2c.get(api_url, timeout=REST_TIMEOUT)
return response
[docs]
def post(self, key: str, data: str, cache_name: str) -> Response:
"""Post an entry
Args:
key(str): key of the entry
data(str): content of the entry in json format
cache_name(str): target cache
Returns:
An http Response containing the result of the operation
"""
api_url = self._default_node + self._cache_url + "/" + cache_name + "/" + key
response = self._h2c.post(
api_url,
content=data,
headers={"Content-Type": "application/json"},
timeout=REST_TIMEOUT,
)
return response
[docs]
def put(self, key: str, data: str, cache_name: str) -> Response:
"""Put an entry
Args:
key(str): key of the entry
data(str): content of the entry in json format
cache_name(str): target cache
Returns:
An http Response containing the result of the operation
"""
api_url = self._default_node + self._cache_url + "/" + cache_name + "/" + key
response = self._h2c.put(
api_url,
content=data,
headers={"Content-Type": "application/json"},
timeout=REST_TIMEOUT,
)
return response
[docs]
def get(self, key: str, cache_name: str) -> Response:
"""Get an entry
Args:
key(str): key of the entry
cache_name(str): target cache
Returns:
An http Response containing the entry or errors
"""
api_url = self._default_node + self._cache_url + "/" + cache_name + "/" + key
response = self._h2c.get(
api_url, headers={"Content-Type": "application/json"}, timeout=REST_TIMEOUT
)
return response
[docs]
def schema_post(self, name: str, proto: str) -> Response:
"""Deploy a schema
Args:
name(str): name of the schema. Will be used as a key
proto(str): protobuf schema
Returns:
An http Response containing the result of the operation
"""
api_url = self._default_node + self._schema_url + "/" + name
response = self._h2c.post(api_url, content=proto, timeout=REST_TIMEOUT)
return response
[docs]
def cache_post(self, name: str, config: str) -> Response:
"""Create a cache
Args:
name(str): name of the cache.
config(str): configuration of the cache.
Returns:
An http Response containing the result of the operation
"""
api_url = self._default_node + self._cache_url + "/" + name
response = self._h2c.post(
api_url,
content=config,
headers={"Content-Type": "application/json"},
timeout=REST_TIMEOUT,
)
return response
[docs]
def schema_delete(self, name: str) -> Response:
"""Delete a schema
Args:
name(str): name of the schema.
Returns:
An http Response containing the result of the operation
"""
api_url = self._default_node + self._schema_url + "/" + name
response = self._h2c.delete(api_url, timeout=REST_TIMEOUT)
return response
[docs]
def cache_delete(self, name: str) -> Response:
"""Delete a cache
Args:
name(str): name of the cache.
Returns:
An http Response containing the result of the operation
"""
api_url = self._default_node + self._cache_url + "/" + name
response = self._h2c.delete(api_url, timeout=REST_TIMEOUT)
return response
[docs]
def cache_clear(self, cache_name: str) -> Response:
"""Clear a cache
Args:
cache_name(str): name of the cache.
Returns:
An http Response containing the result of the operation
"""
api_url = (
self._default_node + self._cache_url + "/" + cache_name + "?action=clear"
)
response = self._h2c.post(api_url, timeout=REST_TIMEOUT)
return response
[docs]
def cache_exists(self, cache_name: str) -> bool:
"""Check if a cache exists
Args:
cache_name(str): name of the cache.
Returns:
True if cache exists
"""
api_url = (
self._default_node + self._cache_url + "/" + cache_name + "?action=clear"
)
return self.resource_exists(api_url)
[docs]
def resource_exists(self, api_url: str) -> bool:
"""Check if a resource exists
Args:
api_url(str): url of the resource.
Returns:
true if resource exists
"""
response = self._h2c.head(api_url, timeout=REST_TIMEOUT)
return response.status_code == self.Codes.OK
[docs]
def index_clear(self, cache_name: str) -> Response:
"""Clear an index on a cache
Args:
cache_name(str): name of the cache.
Returns:
An http Response containing the result of the operation
"""
api_url = (
self._default_node
+ self._cache_url
+ "/"
+ cache_name
+ "/search/indexes?action=clear"
)
return self._h2c.post(api_url, timeout=REST_TIMEOUT)
[docs]
def index_reindex(self, cache_name: str) -> Response:
"""Rebuild index on a cache
Args:
cache_name(str): name of the cache.
Returns:
An http Response containing the result of the operation
"""
api_url = (
self._default_node
+ self._cache_url
+ "/"
+ cache_name
+ "/search/indexes?action=reindex"
)
return self._h2c.post(api_url, timeout=REST_TIMEOUT)