Source code for langchain_community.vectorstores.tair

from __future__ import annotations

import json
import logging
import uuid
from typing import Any, Iterable, List, Optional, Type

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env
from langchain_core.vectorstores import VectorStore

logger = logging.getLogger(__name__)


def _uuid_key() -> str:
    return uuid.uuid4().hex


[docs] class Tair(VectorStore): """`Tair` vector store."""
[docs] def __init__( self, embedding_function: Embeddings, url: str, index_name: str, content_key: str = "content", metadata_key: str = "metadata", search_params: Optional[dict] = None, **kwargs: Any, ): self.embedding_function = embedding_function self.index_name = index_name try: from tair import Tair as TairClient except ImportError: raise ImportError( "Could not import tair python package. " "Please install it with `pip install tair`." ) try: # connect to tair from url client = TairClient.from_url(url, **kwargs) except ValueError as e: raise ValueError(f"Tair failed to connect: {e}") self.client = client self.content_key = content_key self.metadata_key = metadata_key self.search_params = search_params
@property def embeddings(self) -> Embeddings: return self.embedding_function
[docs] def create_index_if_not_exist( self, dim: int, distance_type: str, index_type: str, data_type: str, **kwargs: Any, ) -> bool: index = self.client.tvs_get_index(self.index_name) if index is not None: logger.info("Index already exists") return False self.client.tvs_create_index( self.index_name, dim, distance_type, index_type, data_type, **kwargs, ) return True
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Add texts data to an existing index.""" ids = [] keys = kwargs.get("keys", None) use_hybrid_search = False index = self.client.tvs_get_index(self.index_name) if index is not None and index.get("lexical_algorithm") == "bm25": use_hybrid_search = True # Write data to tair pipeline = self.client.pipeline(transaction=False) embeddings = self.embedding_function.embed_documents(list(texts)) for i, text in enumerate(texts): # Use provided key otherwise use default key key = keys[i] if keys else _uuid_key() metadata = metadatas[i] if metadatas else {} if use_hybrid_search: # tair use TEXT attr hybrid search pipeline.tvs_hset( self.index_name, key, embeddings[i], False, **{ "TEXT": text, self.content_key: text, self.metadata_key: json.dumps(metadata), }, ) else: pipeline.tvs_hset( self.index_name, key, embeddings[i], False, **{ self.content_key: text, self.metadata_key: json.dumps(metadata), }, ) ids.append(key) pipeline.execute() return ids
[docs] @classmethod def from_texts( cls: Type[Tair], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = "langchain", content_key: str = "content", metadata_key: str = "metadata", **kwargs: Any, ) -> Tair: try: from tair import tairvector except ImportError: raise ImportError( "Could not import tair python package. " "Please install it with `pip install tair`." ) url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL") if "tair_url" in kwargs: kwargs.pop("tair_url") distance_type = tairvector.DistanceMetric.InnerProduct if "distance_type" in kwargs: distance_type = kwargs.pop("distance_type") index_type = tairvector.IndexType.HNSW if "index_type" in kwargs: index_type = kwargs.pop("index_type") data_type = tairvector.DataType.Float32 if "data_type" in kwargs: data_type = kwargs.pop("data_type") index_params = {} if "index_params" in kwargs: index_params = kwargs.pop("index_params") search_params = {} if "search_params" in kwargs: search_params = kwargs.pop("search_params") keys = None if "keys" in kwargs: keys = kwargs.pop("keys") try: tair_vector_store = cls( embedding, url, index_name, content_key=content_key, metadata_key=metadata_key, search_params=search_params, **kwargs, ) except ValueError as e: raise ValueError(f"tair failed to connect: {e}") # Create embeddings for documents embeddings = embedding.embed_documents(texts) tair_vector_store.create_index_if_not_exist( len(embeddings[0]), distance_type, index_type, data_type, **index_params, ) tair_vector_store.add_texts(texts, metadatas, keys=keys) return tair_vector_store
[docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = "langchain", content_key: str = "content", metadata_key: str = "metadata", **kwargs: Any, ) -> Tair: texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts( texts, embedding, metadatas, index_name, content_key, metadata_key, **kwargs )
[docs] @staticmethod def drop_index( index_name: str = "langchain", **kwargs: Any, ) -> bool: """ Drop an existing index. Args: index_name (str): Name of the index to drop. Returns: bool: True if the index is dropped successfully. """ try: from tair import Tair as TairClient except ImportError: raise ImportError( "Could not import tair python package. " "Please install it with `pip install tair`." ) url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL") try: if "tair_url" in kwargs: kwargs.pop("tair_url") client = TairClient.from_url(url=url, **kwargs) except ValueError as e: raise ValueError(f"Tair connection error: {e}") # delete index ret = client.tvs_del_index(index_name) if ret == 0: # index not exist logger.info("Index does not exist") return False return True
[docs] @classmethod def from_existing_index( cls, embedding: Embeddings, index_name: str = "langchain", content_key: str = "content", metadata_key: str = "metadata", **kwargs: Any, ) -> Tair: """Connect to an existing Tair index.""" url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL") search_params = {} if "search_params" in kwargs: search_params = kwargs.pop("search_params") return cls( embedding, url, index_name, content_key=content_key, metadata_key=metadata_key, search_params=search_params, **kwargs, )