Source code for langchain_community.vectorstores.thirdai_neuraldb

import importlib
import os
import tempfile
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from pydantic import ConfigDict


[docs] class NeuralDBVectorStore(VectorStore): """Vectorstore that uses ThirdAI's NeuralDB. To use, you should have the ``thirdai[neural_db]`` python package installed. Example: .. code-block:: python from langchain_community.vectorstores import NeuralDBVectorStore from thirdai import neural_db as ndb db = ndb.NeuralDB() vectorstore = NeuralDBVectorStore(db=db) """
[docs] def __init__(self, db: Any) -> None: self.db = db
db: Any = None #: :meta private: """NeuralDB instance""" model_config = ConfigDict( extra="forbid", ) @staticmethod def _verify_thirdai_library(thirdai_key: Optional[str] = None): # type: ignore[no-untyped-def] try: from thirdai import licensing importlib.util.find_spec("thirdai.neural_db") licensing.activate(thirdai_key or os.getenv("THIRDAI_KEY")) except ImportError: raise ImportError( "Could not import thirdai python package and neuraldb dependencies. " "Please install it with `pip install thirdai[neural_db]`." )
[docs] @classmethod def from_scratch( # type: ignore[no-untyped-def, no-untyped-def] cls, thirdai_key: Optional[str] = None, **model_kwargs, ): """ Create a NeuralDBVectorStore from scratch. To use, set the ``THIRDAI_KEY`` environment variable with your ThirdAI API key, or pass ``thirdai_key`` as a named parameter. Example: .. code-block:: python from langchain_community.vectorstores import NeuralDBVectorStore vectorstore = NeuralDBVectorStore.from_scratch( thirdai_key="your-thirdai-key", ) vectorstore.insert([ "/path/to/doc.pdf", "/path/to/doc.docx", "/path/to/doc.csv", ]) documents = vectorstore.similarity_search("AI-driven music therapy") """ NeuralDBVectorStore._verify_thirdai_library(thirdai_key) from thirdai import neural_db as ndb return cls(db=ndb.NeuralDB(**model_kwargs)) # type: ignore[call-arg]
[docs] @classmethod def from_checkpoint( # type: ignore[no-untyped-def] cls, checkpoint: Union[str, Path], thirdai_key: Optional[str] = None, ): """ Create a NeuralDBVectorStore with a base model from a saved checkpoint To use, set the ``THIRDAI_KEY`` environment variable with your ThirdAI API key, or pass ``thirdai_key`` as a named parameter. Example: .. code-block:: python from langchain_community.vectorstores import NeuralDBVectorStore vectorstore = NeuralDBVectorStore.from_checkpoint( checkpoint="/path/to/checkpoint.ndb", thirdai_key="your-thirdai-key", ) vectorstore.insert([ "/path/to/doc.pdf", "/path/to/doc.docx", "/path/to/doc.csv", ]) documents = vectorstore.similarity_search("AI-driven music therapy") """ NeuralDBVectorStore._verify_thirdai_library(thirdai_key) from thirdai import neural_db as ndb return cls(db=ndb.NeuralDB.from_checkpoint(checkpoint)) # type: ignore[call-arg]
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> "NeuralDBVectorStore": """Return VectorStore initialized from texts and embeddings.""" model_kwargs = {} if "thirdai_key" in kwargs: model_kwargs["thirdai_key"] = kwargs["thirdai_key"] del kwargs["thirdai_key"] vectorstore = cls.from_scratch(**model_kwargs) vectorstore.add_texts(texts, metadatas, **kwargs) return vectorstore
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ import pandas as pd from thirdai import neural_db as ndb df = pd.DataFrame({"texts": texts}) if metadatas: df = pd.concat([df, pd.DataFrame.from_records(metadatas)], axis=1) temp = tempfile.NamedTemporaryFile("w", delete=False, delete_on_close=False) # type: ignore[call-overload] df.to_csv(temp) source_id = self.insert([ndb.CSV(temp.name)], **kwargs)[0] offset = self.db._savable_state.documents.get_source_by_id(source_id)[1] return [str(offset + i) for i in range(len(texts))] # type: ignore[arg-type]
[docs] def insert( # type: ignore[no-untyped-def, no-untyped-def] self, sources: List[Any], train: bool = True, fast_mode: bool = True, **kwargs, ): """Inserts files / document sources into the vectorstore. Args: train: When True this means that the underlying model in the NeuralDB will undergo unsupervised pretraining on the inserted files. Defaults to True. fast_mode: Much faster insertion with a slight drop in performance. Defaults to True. """ sources = self._preprocess_sources(sources) self.db.insert( sources=sources, train=train, fast_approximation=fast_mode, **kwargs, )
def _preprocess_sources(self, sources): # type: ignore[no-untyped-def] """Checks if the provided sources are string paths. If they are, convert to NeuralDB document objects. Args: sources: list of either string paths to PDF, DOCX or CSV files, or NeuralDB document objects. """ from thirdai import neural_db as ndb if not sources: return sources preprocessed_sources = [] for doc in sources: if not isinstance(doc, str): preprocessed_sources.append(doc) else: if doc.lower().endswith(".pdf"): preprocessed_sources.append(ndb.PDF(doc)) elif doc.lower().endswith(".docx"): preprocessed_sources.append(ndb.DOCX(doc)) elif doc.lower().endswith(".csv"): preprocessed_sources.append(ndb.CSV(doc)) else: raise RuntimeError( f"Could not automatically load {doc}. Only files " "with .pdf, .docx, or .csv extensions can be loaded " "automatically. For other formats, please use the " "appropriate document object from the ThirdAI library." ) return preprocessed_sources
[docs] def upvote(self, query: str, document_id: Union[int, str]): # type: ignore[no-untyped-def] """The vectorstore upweights the score of a document for a specific query. This is useful for fine-tuning the vectorstore to user behavior. Args: query: text to associate with `document_id` document_id: id of the document to associate query with. """ self.db.text_to_result(query, int(document_id))
[docs] def upvote_batch(self, query_id_pairs: List[Tuple[str, int]]): # type: ignore[no-untyped-def] """Given a batch of (query, document id) pairs, the vectorstore upweights the scores of the document for the corresponding queries. This is useful for fine-tuning the vectorstore to user behavior. Args: query_id_pairs: list of (query, document id) pairs. For each pair in this list, the model will upweight the document id for the query. """ self.db.text_to_result_batch( [(query, int(doc_id)) for query, doc_id in query_id_pairs] )
[docs] def associate(self, source: str, target: str): # type: ignore[no-untyped-def] """The vectorstore associates a source phrase with a target phrase. When the vectorstore sees the source phrase, it will also consider results that are relevant to the target phrase. Args: source: text to associate to `target`. target: text to associate `source` to. """ self.db.associate(source, target)
[docs] def associate_batch(self, text_pairs: List[Tuple[str, str]]): # type: ignore[no-untyped-def] """Given a batch of (source, target) pairs, the vectorstore associates each source phrase with the corresponding target phrase. Args: text_pairs: list of (source, target) text pairs. For each pair in this list, the source will be associated with the target. """ self.db.associate_batch(text_pairs)
[docs] def save(self, path: str): # type: ignore[no-untyped-def] """Saves a NeuralDB instance to disk. Can be loaded into memory by calling NeuralDB.from_checkpoint(path) Args: path: path on disk to save the NeuralDB instance to. """ self.db.save(path)
[docs] class NeuralDBClientVectorStore(VectorStore): """Vectorstore that uses ThirdAI's NeuralDB Enterprise Python Client for NeuralDBs. To use, you should have the ``thirdai[neural_db]`` python package installed. Example: .. code-block:: python from langchain_community.vectorstores import NeuralDBClientVectorStore from thirdai.neural_db import ModelBazaar, NeuralDBClient bazaar = ModelBazaar(base_url="http://{NEURAL_DB_ENTERPRISE_IP}/api/") bazaar.log_in(email="user@thirdai.com", password="1234") ndb_client = NeuralDBClient( deployment_identifier="user/model-0:user/deployment-0", base_url="http://{NEURAL_DB_ENTERPRISE_IP}/api/", bazaar=bazaar ) vectorstore = NeuralDBClientVectorStore(db=ndb_client) retriever = vectorstore.as_retriever(search_kwargs={'k':5}) """
[docs] def __init__(self, db: Any) -> None: self.db = db
db: Any = None #: :meta private: """NeuralDB Client instance""" model_config = ConfigDict( extra="forbid", )
[docs] def insert(self, documents: List[Dict[str, Any]]): # type: ignore[no-untyped-def, no-untyped-def] """ Inserts documents into the VectorStore and return the corresponding Sources. Args: documents (List[Dict[str, Any]]): A list of dictionaries that represent documents to be inserted to the VectorStores. The document dictionaries must be in the following format: {"document_type": "DOCUMENT_TYPE", **kwargs} where "DOCUMENT_TYPE" is one of the following: "PDF", "CSV", "DOCX", "URL", "SentenceLevelPDF", "SentenceLevelDOCX", "Unstructured", "InMemoryText". The kwargs for each document type are shown below: class PDF(Document): document_type: Literal["PDF"] path: str metadata: Optional[dict[str, Any]] = None on_disk: bool = False version: str = "v1" chunk_size: int = 100 stride: int = 40 emphasize_first_words: int = 0 ignore_header_footer: bool = True ignore_nonstandard_orientation: bool = True class CSV(Document): document_type: Literal["CSV"] path: str id_column: Optional[str] = None strong_columns: Optional[List[str]] = None weak_columns: Optional[List[str]] = None reference_columns: Optional[List[str]] = None save_extra_info: bool = True metadata: Optional[dict[str, Any]] = None has_offset: bool = False on_disk: bool = False class DOCX(Document): document_type: Literal["DOCX"] path: str metadata: Optional[dict[str, Any]] = None on_disk: bool = False class URL(Document): document_type: Literal["URL"] url: str save_extra_info: bool = True title_is_strong: bool = False metadata: Optional[dict[str, Any]] = None on_disk: bool = False class SentenceLevelPDF(Document): document_type: Literal["SentenceLevelPDF"] path: str metadata: Optional[dict[str, Any]] = None on_disk: bool = False class SentenceLevelDOCX(Document): document_type: Literal["SentenceLevelDOCX"] path: str metadata: Optional[dict[str, Any]] = None on_disk: bool = False class Unstructured(Document): document_type: Literal["Unstructured"] path: str save_extra_info: bool = True metadata: Optional[dict[str, Any]] = None on_disk: bool = False class InMemoryText(Document): document_type: Literal["InMemoryText"] name: str texts: list[str] metadatas: Optional[list[dict[str, Any]]] = None global_metadata: Optional[dict[str, Any]] = None on_disk: bool = False For Document types with the arg "path", ensure that the path exists on your local machine. """ return self.db.insert(documents)
[docs] def remove_documents(self, source_ids: List[str]): # type: ignore[no-untyped-def] """ Deletes documents from the VectorStore using source ids. Args: files (List[str]): A list of source ids to delete from the VectorStore. """ self.db.delete(source_ids)