Source code for langchain_core.prompts.pipeline

from typing import Any
from typing import Optional as Optional

from pydantic import model_validator

from langchain_core.prompt_values import PromptValue
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.chat import BaseChatPromptTemplate


def _get_inputs(inputs: dict, input_variables: list[str]) -> dict:
    return {k: inputs[k] for k in input_variables}


[docs] class PipelinePromptTemplate(BasePromptTemplate): """Prompt template for composing multiple prompt templates together. This can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts: - final_prompt: This is the final prompt that is returned - pipeline_prompts: This is a list of tuples, consisting of a string (`name`) and a Prompt Template. Each PromptTemplate will be formatted and then passed to future prompt templates as a variable with the same name as `name` """ final_prompt: BasePromptTemplate """The final prompt that is returned.""" pipeline_prompts: list[tuple[str, BasePromptTemplate]] """A list of tuples, consisting of a string (`name`) and a Prompt Template.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "pipeline"] @model_validator(mode="before") @classmethod def get_input_variables(cls, values: dict) -> Any: """Get input variables.""" created_variables = set() all_variables = set() for k, prompt in values["pipeline_prompts"]: created_variables.add(k) all_variables.update(prompt.input_variables) values["input_variables"] = list(all_variables.difference(created_variables)) return values
[docs] def format_prompt(self, **kwargs: Any) -> PromptValue: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = prompt.format_messages(**_inputs) else: kwargs[k] = prompt.format(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return self.final_prompt.format_prompt(**_inputs)
[docs] async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = await prompt.aformat_messages(**_inputs) else: kwargs[k] = await prompt.aformat(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return await self.final_prompt.aformat_prompt(**_inputs)
[docs] def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return self.format_prompt(**kwargs).to_string()
[docs] async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return (await self.aformat_prompt(**kwargs)).to_string()
@property def _prompt_type(self) -> str: raise ValueError
PipelinePromptTemplate.model_rebuild()