Source code for langchain_core.runnables.graph

from __future__ import annotations

import inspect
from collections import defaultdict
from collections.abc import Sequence
from dataclasses import dataclass, field
from enum import Enum
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    NamedTuple,
    Optional,
    Protocol,
    TypedDict,
    Union,
    overload,
)
from uuid import UUID, uuid4

from pydantic import BaseModel

from langchain_core.utils.pydantic import _IgnoreUnserializable, is_basemodel_subclass

if TYPE_CHECKING:
    from langchain_core.runnables.base import Runnable as RunnableType


[docs] class Stringifiable(Protocol): def __str__(self) -> str: ...
[docs] class LabelsDict(TypedDict): """Dictionary of labels for nodes and edges in a graph.""" nodes: dict[str, str] """Labels for nodes.""" edges: dict[str, str] """Labels for edges."""
[docs] def is_uuid(value: str) -> bool: """Check if a string is a valid UUID. Args: value: The string to check. Returns: True if the string is a valid UUID, False otherwise. """ try: UUID(value) return True except ValueError: return False
[docs] class Edge(NamedTuple): """Edge in a graph. Parameters: source: The source node id. target: The target node id. data: Optional data associated with the edge. Defaults to None. conditional: Whether the edge is conditional. Defaults to False. """ source: str target: str data: Optional[Stringifiable] = None conditional: bool = False
[docs] def copy( self, *, source: Optional[str] = None, target: Optional[str] = None ) -> Edge: """Return a copy of the edge with optional new source and target nodes. Args: source: The new source node id. Defaults to None. target: The new target node id. Defaults to None. Returns: A copy of the edge with the new source and target nodes. """ return Edge( source=source or self.source, target=target or self.target, data=self.data, conditional=self.conditional, )
[docs] class Node(NamedTuple): """Node in a graph. Parameters: id: The unique identifier of the node. name: The name of the node. data: The data of the node. metadata: Optional metadata for the node. Defaults to None. """ id: str name: str data: Union[type[BaseModel], RunnableType] metadata: Optional[dict[str, Any]]
[docs] def copy(self, *, id: Optional[str] = None, name: Optional[str] = None) -> Node: """Return a copy of the node with optional new id and name. Args: id: The new node id. Defaults to None. name: The new node name. Defaults to None. Returns: A copy of the node with the new id and name. """ return Node( id=id or self.id, name=name or self.name, data=self.data, metadata=self.metadata, )
[docs] class Branch(NamedTuple): """Branch in a graph. Parameters: condition: A callable that returns a string representation of the condition. ends: Optional dictionary of end node ids for the branches. Defaults to None. """ condition: Callable[..., str] ends: Optional[dict[str, str]]
[docs] class CurveStyle(Enum): """Enum for different curve styles supported by Mermaid""" BASIS = "basis" BUMP_X = "bumpX" BUMP_Y = "bumpY" CARDINAL = "cardinal" CATMULL_ROM = "catmullRom" LINEAR = "linear" MONOTONE_X = "monotoneX" MONOTONE_Y = "monotoneY" NATURAL = "natural" STEP = "step" STEP_AFTER = "stepAfter" STEP_BEFORE = "stepBefore"
[docs] @dataclass class NodeStyles: """Schema for Hexadecimal color codes for different node types. Parameters: default: The default color code. Defaults to "fill:#f2f0ff,line-height:1.2". first: The color code for the first node. Defaults to "fill-opacity:0". last: The color code for the last node. Defaults to "fill:#bfb6fc". """ default: str = "fill:#f2f0ff,line-height:1.2" first: str = "fill-opacity:0" last: str = "fill:#bfb6fc"
[docs] class MermaidDrawMethod(Enum): """Enum for different draw methods supported by Mermaid""" PYPPETEER = "pyppeteer" # Uses Pyppeteer to render the graph API = "api" # Uses Mermaid.INK API to render the graph
[docs] def node_data_str(id: str, data: Union[type[BaseModel], RunnableType]) -> str: """Convert the data of a node to a string. Args: id: The node id. data: The node data. Returns: A string representation of the data. """ from langchain_core.runnables.base import Runnable if not is_uuid(id): return id elif isinstance(data, Runnable): data_str = data.get_name() else: data_str = data.__name__ return data_str if not data_str.startswith("Runnable") else data_str[8:]
[docs] def node_data_json( node: Node, *, with_schemas: bool = False ) -> dict[str, Union[str, dict[str, Any]]]: """Convert the data of a node to a JSON-serializable format. Args: node: The node to convert. with_schemas: Whether to include the schema of the data if it is a Pydantic model. Defaults to False. Returns: A dictionary with the type of the data and the data itself. """ from langchain_core.load.serializable import to_json_not_implemented from langchain_core.runnables.base import Runnable, RunnableSerializable if isinstance(node.data, RunnableSerializable): json: dict[str, Any] = { "type": "runnable", "data": { "id": node.data.lc_id(), "name": node_data_str(node.id, node.data), }, } elif isinstance(node.data, Runnable): json = { "type": "runnable", "data": { "id": to_json_not_implemented(node.data)["id"], "name": node_data_str(node.id, node.data), }, } elif inspect.isclass(node.data) and is_basemodel_subclass(node.data): json = ( { "type": "schema", "data": node.data.model_json_schema( schema_generator=_IgnoreUnserializable ), } if with_schemas else { "type": "schema", "data": node_data_str(node.id, node.data), } ) else: json = { "type": "unknown", "data": node_data_str(node.id, node.data), } if node.metadata is not None: json["metadata"] = node.metadata return json
[docs] @dataclass class Graph: """Graph of nodes and edges. Parameters: nodes: Dictionary of nodes in the graph. Defaults to an empty dictionary. edges: List of edges in the graph. Defaults to an empty list. """ nodes: dict[str, Node] = field(default_factory=dict) edges: list[Edge] = field(default_factory=list)
[docs] def to_json(self, *, with_schemas: bool = False) -> dict[str, list[dict[str, Any]]]: """Convert the graph to a JSON-serializable format. Args: with_schemas: Whether to include the schemas of the nodes if they are Pydantic models. Defaults to False. Returns: A dictionary with the nodes and edges of the graph. """ stable_node_ids = { node.id: i if is_uuid(node.id) else node.id for i, node in enumerate(self.nodes.values()) } edges: list[dict[str, Any]] = [] for edge in self.edges: edge_dict = { "source": stable_node_ids[edge.source], "target": stable_node_ids[edge.target], } if edge.data is not None: edge_dict["data"] = edge.data if edge.conditional: edge_dict["conditional"] = True edges.append(edge_dict) return { "nodes": [ { "id": stable_node_ids[node.id], **node_data_json(node, with_schemas=with_schemas), } for node in self.nodes.values() ], "edges": edges, }
def __bool__(self) -> bool: return bool(self.nodes)
[docs] def next_id(self) -> str: """Return a new unique node identifier that can be used to add a node to the graph.""" return uuid4().hex
[docs] def add_node( self, data: Union[type[BaseModel], RunnableType], id: Optional[str] = None, *, metadata: Optional[dict[str, Any]] = None, ) -> Node: """Add a node to the graph and return it. Args: data: The data of the node. id: The id of the node. Defaults to None. metadata: Optional metadata for the node. Defaults to None. Returns: The node that was added to the graph. Raises: ValueError: If a node with the same id already exists. """ if id is not None and id in self.nodes: msg = f"Node with id {id} already exists" raise ValueError(msg) id = id or self.next_id() node = Node(id=id, data=data, metadata=metadata, name=node_data_str(id, data)) self.nodes[node.id] = node return node
[docs] def remove_node(self, node: Node) -> None: """Remove a node from the graph and all edges connected to it. Args: node: The node to remove. """ self.nodes.pop(node.id) self.edges = [ edge for edge in self.edges if edge.source != node.id and edge.target != node.id ]
[docs] def add_edge( self, source: Node, target: Node, data: Optional[Stringifiable] = None, conditional: bool = False, ) -> Edge: """Add an edge to the graph and return it. Args: source: The source node of the edge. target: The target node of the edge. data: Optional data associated with the edge. Defaults to None. conditional: Whether the edge is conditional. Defaults to False. Returns: The edge that was added to the graph. Raises: ValueError: If the source or target node is not in the graph. """ if source.id not in self.nodes: msg = f"Source node {source.id} not in graph" raise ValueError(msg) if target.id not in self.nodes: msg = f"Target node {target.id} not in graph" raise ValueError(msg) edge = Edge( source=source.id, target=target.id, data=data, conditional=conditional ) self.edges.append(edge) return edge
[docs] def extend( self, graph: Graph, *, prefix: str = "" ) -> tuple[Optional[Node], Optional[Node]]: """Add all nodes and edges from another graph. Note this doesn't check for duplicates, nor does it connect the graphs. Args: graph: The graph to add. prefix: The prefix to add to the node ids. Defaults to "". Returns: A tuple of the first and last nodes of the subgraph. """ if all(is_uuid(node.id) for node in graph.nodes.values()): prefix = "" def prefixed(id: str) -> str: return f"{prefix}:{id}" if prefix else id # prefix each node self.nodes.update( {prefixed(k): v.copy(id=prefixed(k)) for k, v in graph.nodes.items()} ) # prefix each edge's source and target self.edges.extend( [ edge.copy(source=prefixed(edge.source), target=prefixed(edge.target)) for edge in graph.edges ] ) # return (prefixed) first and last nodes of the subgraph first, last = graph.first_node(), graph.last_node() return ( first.copy(id=prefixed(first.id)) if first else None, last.copy(id=prefixed(last.id)) if last else None, )
[docs] def reid(self) -> Graph: """Return a new graph with all nodes re-identified, using their unique, readable names where possible.""" node_name_to_ids = defaultdict(list) for node in self.nodes.values(): node_name_to_ids[node.name].append(node.id) unique_labels = { node_id: node_name if len(node_ids) == 1 else f"{node_name}_{i + 1}" for node_name, node_ids in node_name_to_ids.items() for i, node_id in enumerate(node_ids) } def _get_node_id(node_id: str) -> str: label = unique_labels[node_id] if is_uuid(node_id): return label else: return node_id return Graph( nodes={ _get_node_id(id): node.copy(id=_get_node_id(id)) for id, node in self.nodes.items() }, edges=[ edge.copy( source=_get_node_id(edge.source), target=_get_node_id(edge.target), ) for edge in self.edges ], )
[docs] def first_node(self) -> Optional[Node]: """Find the single node that is not a target of any edge. If there is no such node, or there are multiple, return None. When drawing the graph, this node would be the origin.""" return _first_node(self)
[docs] def last_node(self) -> Optional[Node]: """Find the single node that is not a source of any edge. If there is no such node, or there are multiple, return None. When drawing the graph, this node would be the destination.""" return _last_node(self)
[docs] def trim_first_node(self) -> None: """Remove the first node if it exists and has a single outgoing edge, i.e., if removing it would not leave the graph without a "first" node.""" first_node = self.first_node() if first_node and _first_node(self, exclude=[first_node.id]): self.remove_node(first_node)
[docs] def trim_last_node(self) -> None: """Remove the last node if it exists and has a single incoming edge, i.e., if removing it would not leave the graph without a "last" node.""" last_node = self.last_node() if last_node and _last_node(self, exclude=[last_node.id]): self.remove_node(last_node)
[docs] def draw_ascii(self) -> str: """Draw the graph as an ASCII art string.""" from langchain_core.runnables.graph_ascii import draw_ascii return draw_ascii( {node.id: node.name for node in self.nodes.values()}, self.edges, )
[docs] def print_ascii(self) -> None: """Print the graph as an ASCII art string.""" print(self.draw_ascii()) # noqa: T201
@overload def draw_png( self, output_file_path: str, fontname: Optional[str] = None, labels: Optional[LabelsDict] = None, ) -> None: ... @overload def draw_png( self, output_file_path: None, fontname: Optional[str] = None, labels: Optional[LabelsDict] = None, ) -> bytes: ...
[docs] def draw_png( self, output_file_path: Optional[str] = None, fontname: Optional[str] = None, labels: Optional[LabelsDict] = None, ) -> Union[bytes, None]: """Draw the graph as a PNG image. Args: output_file_path: The path to save the image to. If None, the image is not saved. Defaults to None. fontname: The name of the font to use. Defaults to None. labels: Optional labels for nodes and edges in the graph. Defaults to None. Returns: The PNG image as bytes if output_file_path is None, None otherwise. """ from langchain_core.runnables.graph_png import PngDrawer default_node_labels = {node.id: node.name for node in self.nodes.values()} return PngDrawer( fontname, LabelsDict( nodes={ **default_node_labels, **(labels["nodes"] if labels is not None else {}), }, edges=labels["edges"] if labels is not None else {}, ), ).draw(self, output_file_path)
[docs] def draw_mermaid( self, *, with_styles: bool = True, curve_style: CurveStyle = CurveStyle.LINEAR, node_colors: Optional[NodeStyles] = None, wrap_label_n_words: int = 9, ) -> str: """Draw the graph as a Mermaid syntax string. Args: with_styles: Whether to include styles in the syntax. Defaults to True. curve_style: The style of the edges. Defaults to CurveStyle.LINEAR. node_colors: The colors of the nodes. Defaults to NodeStyles(). wrap_label_n_words: The number of words to wrap the node labels at. Defaults to 9. Returns: The Mermaid syntax string. """ from langchain_core.runnables.graph_mermaid import draw_mermaid graph = self.reid() first_node = graph.first_node() last_node = graph.last_node() return draw_mermaid( nodes=graph.nodes, edges=graph.edges, first_node=first_node.id if first_node else None, last_node=last_node.id if last_node else None, with_styles=with_styles, curve_style=curve_style, node_styles=node_colors, wrap_label_n_words=wrap_label_n_words, )
[docs] def draw_mermaid_png( self, *, curve_style: CurveStyle = CurveStyle.LINEAR, node_colors: Optional[NodeStyles] = None, wrap_label_n_words: int = 9, output_file_path: Optional[str] = None, draw_method: MermaidDrawMethod = MermaidDrawMethod.API, background_color: str = "white", padding: int = 10, ) -> bytes: """Draw the graph as a PNG image using Mermaid. Args: curve_style: The style of the edges. Defaults to CurveStyle.LINEAR. node_colors: The colors of the nodes. Defaults to NodeStyles(). wrap_label_n_words: The number of words to wrap the node labels at. Defaults to 9. output_file_path: The path to save the image to. If None, the image is not saved. Defaults to None. draw_method: The method to use to draw the graph. Defaults to MermaidDrawMethod.API. background_color: The color of the background. Defaults to "white". padding: The padding around the graph. Defaults to 10. Returns: The PNG image as bytes. """ from langchain_core.runnables.graph_mermaid import draw_mermaid_png mermaid_syntax = self.draw_mermaid( curve_style=curve_style, node_colors=node_colors, wrap_label_n_words=wrap_label_n_words, ) return draw_mermaid_png( mermaid_syntax=mermaid_syntax, output_file_path=output_file_path, draw_method=draw_method, background_color=background_color, padding=padding, )
def _first_node(graph: Graph, exclude: Sequence[str] = ()) -> Optional[Node]: """Find the single node that is not a target of any edge. Exclude nodes/sources with ids in the exclude list. If there is no such node, or there are multiple, return None. When drawing the graph, this node would be the origin.""" targets = {edge.target for edge in graph.edges if edge.source not in exclude} found: list[Node] = [] for node in graph.nodes.values(): if node.id not in exclude and node.id not in targets: found.append(node) return found[0] if len(found) == 1 else None def _last_node(graph: Graph, exclude: Sequence[str] = ()) -> Optional[Node]: """Find the single node that is not a source of any edge. Exclude nodes/targets with ids in the exclude list. If there is no such node, or there are multiple, return None. When drawing the graph, this node would be the destination.""" sources = {edge.source for edge in graph.edges if edge.target not in exclude} found: list[Node] = [] for node in graph.nodes.values(): if node.id not in exclude and node.id not in sources: found.append(node) return found[0] if len(found) == 1 else None