Source code for langchain_core.tools.simple

from __future__ import annotations

from collections.abc import Awaitable
from inspect import signature
from typing import (
    Any,
    Callable,
    Optional,
    Union,
)

from pydantic import BaseModel

from langchain_core.callbacks import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)
from langchain_core.messages import ToolCall
from langchain_core.runnables import RunnableConfig, run_in_executor
from langchain_core.tools.base import (
    BaseTool,
    ToolException,
    _get_runnable_config_param,
)


[docs] class Tool(BaseTool): """Tool that takes in function or coroutine directly.""" description: str = "" func: Optional[Callable[..., str]] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[str]]] = None """The asynchronous version of the function.""" # --- Runnable ---
[docs] async def ainvoke( self, input: Union[str, dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Any: if not self.coroutine: # If the tool does not implement async, fall back to default implementation return await run_in_executor(config, self.invoke, input, config, **kwargs) return await super().ainvoke(input, config, **kwargs)
# --- Tool --- @property def args(self) -> dict: """The tool's input arguments. Returns: The input arguments for the tool. """ if self.args_schema is not None: return self.args_schema.model_json_schema()["properties"] # For backwards compatibility, if the function signature is ambiguous, # assume it takes a single string input. return {"tool_input": {"type": "string"}} def _to_args_and_kwargs( self, tool_input: Union[str, dict], tool_call_id: Optional[str] ) -> tuple[tuple, dict]: """Convert tool input to pydantic model.""" args, kwargs = super()._to_args_and_kwargs(tool_input, tool_call_id) # For backwards compatibility. The tool must be run with a single input all_args = list(args) + list(kwargs.values()) if len(all_args) != 1: msg = ( f"""Too many arguments to single-input tool {self.name}. Consider using StructuredTool instead.""" f" Args: {all_args}" ) raise ToolException(msg) return tuple(all_args), {} def _run( self, *args: Any, config: RunnableConfig, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" if self.func: if run_manager and signature(self.func).parameters.get("callbacks"): kwargs["callbacks"] = run_manager.get_child() if config_param := _get_runnable_config_param(self.func): kwargs[config_param] = config return self.func(*args, **kwargs) msg = "Tool does not support sync invocation." raise NotImplementedError(msg) async def _arun( self, *args: Any, config: RunnableConfig, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool asynchronously.""" if self.coroutine: if run_manager and signature(self.coroutine).parameters.get("callbacks"): kwargs["callbacks"] = run_manager.get_child() if config_param := _get_runnable_config_param(self.coroutine): kwargs[config_param] = config return await self.coroutine(*args, **kwargs) # NOTE: this code is unreachable since _arun is only called if coroutine is not # None. return await super()._arun( *args, config=config, run_manager=run_manager, **kwargs ) # TODO: this is for backwards compatibility, remove in future def __init__( self, name: str, func: Optional[Callable], description: str, **kwargs: Any ) -> None: """Initialize tool.""" super().__init__( # type: ignore[call-arg] name=name, func=func, description=description, **kwargs )
[docs] @classmethod def from_function( cls, func: Optional[Callable], name: str, # We keep these required to support backwards compatibility description: str, return_direct: bool = False, args_schema: Optional[type[BaseModel]] = None, coroutine: Optional[ Callable[..., Awaitable[Any]] ] = None, # This is last for compatibility, but should be after func **kwargs: Any, ) -> Tool: """Initialize tool from a function. Args: func: The function to create the tool from. name: The name of the tool. description: The description of the tool. return_direct: Whether to return the output directly. Defaults to False. args_schema: The schema of the tool's input arguments. Defaults to None. coroutine: The asynchronous version of the function. Defaults to None. kwargs: Additional arguments to pass to the tool. Returns: The tool. Raises: ValueError: If the function is not provided. """ if func is None and coroutine is None: msg = "Function and/or coroutine must be provided" raise ValueError(msg) return cls( name=name, func=func, coroutine=coroutine, description=description, return_direct=return_direct, args_schema=args_schema, **kwargs, )
Tool.model_rebuild()