Source code for langchain_databricks.chat_models

"""Databricks chat models."""

import json
import logging
from operator import itemgetter
from typing import (
    Any,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Sequence,
    Type,
    Union,
)

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import BaseChatModel
from langchain_core.language_models.base import LanguageModelInput
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
    ToolMessage,
    ToolMessageChunk,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.messages.tool import tool_call_chunk
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
    JsonOutputKeyToolsParser,
    PydanticToolsParser,
    make_invalid_tool_call,
    parse_tool_call,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_core.utils.pydantic import is_basemodel_subclass
from mlflow.deployments import BaseDeploymentClient  # type: ignore
from pydantic import BaseModel, Field

from langchain_databricks.utils import get_deployment_client

logger = logging.getLogger(__name__)


[docs] class ChatDatabricks(BaseChatModel): """Databricks chat model integration. Setup: Install ``langchain-databricks``. .. code-block:: bash pip install -U langchain-databricks If you are outside Databricks, set the Databricks workspace hostname and personal access token to environment variables: .. code-block:: bash export DATABRICKS_HOSTNAME="https://your-databricks-workspace" export DATABRICKS_TOKEN="your-personal-access-token" Key init args — completion params: endpoint: str Name of Databricks Model Serving endpoint to query. target_uri: str The target URI to use. Defaults to ``databricks``. temperature: float Sampling temperature. Higher values make the model more creative. n: Optional[int] The number of completion choices to generate. stop: Optional[List[str]] List of strings to stop generation at. max_tokens: Optional[int] Max number of tokens to generate. extra_params: Optional[Dict[str, Any]] Any extra parameters to pass to the endpoint. Instantiate: .. code-block:: python from langchain_databricks import ChatDatabricks llm = ChatDatabricks( endpoint="databricks-meta-llama-3-1-405b-instruct", temperature=0, max_tokens=500, ) Invoke: .. code-block:: python messages = [ ("system", "You are a helpful translator. Translate the user sentence to French."), ("human", "I love programming."), ] llm.invoke(messages) .. code-block:: python AIMessage( content="J'adore la programmation.", response_metadata={ 'prompt_tokens': 32, 'completion_tokens': 9, 'total_tokens': 41 }, id='run-64eebbdd-88a8-4a25-b508-21e9a5f146c5-0' ) Stream: .. code-block:: python for chunk in llm.stream(messages): print(chunk) .. code-block:: python content='J' id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content="'" id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content='ad' id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content='ore' id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content=' la' id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content=' programm' id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content='ation' id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content='.' id='run-609b8f47-e580-4691-9ee4-e2109f53155e' content='' response_metadata={'finish_reason': 'stop'} id='run-609b8f47-e580-4691-9ee4-e2109f53155e' .. code-block:: python stream = llm.stream(messages) full = next(stream) for chunk in stream: full += chunk full .. code-block:: python AIMessageChunk( content="J'adore la programmation.", response_metadata={ 'finish_reason': 'stop' }, id='run-4cef851f-6223-424f-ad26-4a54e5852aa5' ) To get token usage returned when streaming, pass the ``stream_usage`` kwarg: .. code-block:: python stream = llm.stream(messages, stream_usage=True) next(stream).usage_metadata .. code-block:: python {"input_tokens": 28, "output_tokens": 5, "total_tokens": 33} Alternatively, setting ``stream_usage`` when instantiating the model can be useful when incorporating ``ChatDatabricks`` into LCEL chains-- or when using methods like ``.with_structured_output``, which generate chains under the hood. .. code-block:: python llm = ChatDatabricks( endpoint="databricks-meta-llama-3-1-405b-instruct", stream_usage=True ) structured_llm = llm.with_structured_output(...) Async: .. code-block:: python await llm.ainvoke(messages) # stream: # async for chunk in llm.astream(messages) # batch: # await llm.abatch([messages]) .. code-block:: python AIMessage( content="J'adore la programmation.", response_metadata={ 'prompt_tokens': 32, 'completion_tokens': 9, 'total_tokens': 41 }, id='run-e4bb043e-772b-4e1d-9f98-77ccc00c0271-0' ) Tool calling: .. code-block:: python from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field(..., description="The city and state, e.g. San Francisco, CA") class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field(..., description="The city and state, e.g. San Francisco, CA") llm_with_tools = llm.bind_tools([GetWeather, GetPopulation]) ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?") ai_msg.tool_calls .. code-block:: python [ { 'name': 'GetWeather', 'args': { 'location': 'Los Angeles, CA' }, 'id': 'call_ea0a6004-8e64-4ae8-a192-a40e295bfa24', 'type': 'tool_call' } ] To use tool calls, your model endpoint must support ``tools`` parameter. See [Function calling on Databricks](https://python.langchain.com/docs/integrations/chat/databricks/#function-calling-on-databricks) for more information. """ # noqa: E501 endpoint: str """Name of Databricks Model Serving endpoint to query.""" target_uri: str = "databricks" """The target URI to use. Defaults to ``databricks``.""" temperature: float = 0.0 """Sampling temperature. Higher values make the model more creative.""" n: int = 1 """The number of completion choices to generate.""" stop: Optional[List[str]] = None """List of strings to stop generation at.""" max_tokens: Optional[int] = None """The maximum number of tokens to generate.""" extra_params: Optional[Dict[str, Any]] = None """Whether to include usage metadata in streaming output. If True, additional message chunks will be generated during the stream including usage metadata. """ stream_usage: bool = False """Any extra parameters to pass to the endpoint.""" client: Optional[BaseDeploymentClient] = Field( default=None, exclude=True ) #: :meta private: def __init__(self, **kwargs: Any): super().__init__(**kwargs) self.client = get_deployment_client(self.target_uri) self.extra_params = self.extra_params or {} @property def _default_params(self) -> Dict[str, Any]: params: Dict[str, Any] = { "target_uri": self.target_uri, "endpoint": self.endpoint, "temperature": self.temperature, "n": self.n, "stop": self.stop, "max_tokens": self.max_tokens, "extra_params": self.extra_params, } return params def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: data = self._prepare_inputs(messages, stop, **kwargs) resp = self.client.predict(endpoint=self.endpoint, inputs=data) # type: ignore return self._convert_response_to_chat_result(resp) def _prepare_inputs( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, **kwargs: Any, ) -> Dict[str, Any]: data: Dict[str, Any] = { "messages": [_convert_message_to_dict(msg) for msg in messages], "temperature": self.temperature, "n": self.n, **self.extra_params, # type: ignore **kwargs, } if stop := self.stop or stop: data["stop"] = stop if self.max_tokens is not None: data["max_tokens"] = self.max_tokens return data def _convert_response_to_chat_result( self, response: Mapping[str, Any] ) -> ChatResult: generations = [ ChatGeneration( message=_convert_dict_to_message(choice["message"]), generation_info=choice.get("usage", {}), ) for choice in response["choices"] ] usage = response.get("usage", {}) return ChatResult(generations=generations, llm_output=usage) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, *, stream_usage: Optional[bool] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: if stream_usage is None: stream_usage = self.stream_usage data = self._prepare_inputs(messages, stop, **kwargs) first_chunk_role = None for chunk in self.client.predict_stream(endpoint=self.endpoint, inputs=data): # type: ignore if chunk["choices"]: choice = chunk["choices"][0] chunk_delta = choice["delta"] if first_chunk_role is None: first_chunk_role = chunk_delta.get("role") if stream_usage and (usage := chunk.get("usage")): input_tokens = usage.get("prompt_tokens", 0) output_tokens = usage.get("completion_tokens", 0) usage = { "input_tokens": input_tokens, "output_tokens": output_tokens, "total_tokens": input_tokens + output_tokens, } else: usage = None chunk_message = _convert_dict_to_message_chunk( chunk_delta, first_chunk_role, usage=usage ) generation_info = {} if finish_reason := choice.get("finish_reason"): generation_info["finish_reason"] = finish_reason if logprobs := choice.get("logprobs"): generation_info["logprobs"] = logprobs chunk = ChatGenerationChunk( message=chunk_message, generation_info=generation_info or None ) if run_manager: run_manager.on_llm_new_token( chunk.text, chunk=chunk, logprobs=logprobs ) yield chunk else: # Handle the case where choices are empty if needed continue
[docs] def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], *, tool_choice: Optional[ Union[dict, str, Literal["auto", "none", "required", "any"], bool] ] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tool-like objects to this chat model. Assumes model is compatible with OpenAI tool-calling API. Args: tools: A list of tool definitions to bind to this chat model. Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. tool_choice: Which tool to require the model to call. Options are: name of the tool (str): calls corresponding tool; "auto": automatically selects a tool (including no tool); "none": model does not generate any tool calls and instead must generate a standard assistant message; "required": the model picks the most relevant tool in tools and must generate a tool call; or a dict of the form: {"type": "function", "function": {"name": <<tool_name>>}}. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ formatted_tools = [convert_to_openai_tool(tool) for tool in tools] if tool_choice: if isinstance(tool_choice, str): # tool_choice is a tool/function name if tool_choice not in ("auto", "none", "required", "any"): tool_choice = { "type": "function", "function": {"name": tool_choice}, } # 'any' is not natively supported by OpenAI API, # but supported by other models in Langchain. # Ref: https://github.com/langchain-ai/langchain/blob/202d7f6c4a2ca8c7e5949d935bcf0ba9b0c23fb0/libs/partners/openai/langchain_openai/chat_models/base.py#L1098C1-L1101C45 if tool_choice == "any": tool_choice = "required" elif isinstance(tool_choice, dict): tool_names = [ formatted_tool["function"]["name"] for formatted_tool in formatted_tools ] if not any( tool_name == tool_choice["function"]["name"] for tool_name in tool_names ): raise ValueError( f"Tool choice {tool_choice} was specified, but the only " f"provided tools were {tool_names}." ) else: raise ValueError( f"Unrecognized tool_choice type. Expected str, bool or dict. " f"Received: {tool_choice}" ) kwargs["tool_choice"] = tool_choice return super().bind(tools=formatted_tools, **kwargs)
[docs] def with_structured_output( self, schema: Optional[Union[Dict, Type]] = None, *, method: Literal["function_calling", "json_mode"] = "function_calling", include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: """Model wrapper that returns outputs formatted to match the given schema. Assumes model is compatible with OpenAI tool-calling API. Args: schema: The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If `method` is "function_calling" and `schema` is a dict, then the dict must match the OpenAI function-calling spec or be a valid JSON schema with top level 'title' and 'description' keys specified. method: The method for steering model generation, either "function_calling" or "json_mode". If "function_calling" then the schema will be converted to an OpenAI function and the returned model will make use of the function-calling API. If "json_mode" then OpenAI's JSON mode will be used. Note that if using "json_mode" then you must include instructions for formatting the output into the desired schema into the model call. include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". Returns: A Runnable that takes any ChatModel input and returns as output: If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). Otherwise, if ``include_raw`` is False then Runnable outputs a dict. If ``include_raw`` is True, then Runnable outputs a dict with keys: - ``"raw"``: BaseMessage - ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above. - ``"parsing_error"``: Optional[BaseException] Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_databricks import ChatDatabricks from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct") structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # ) Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True): .. code-block:: python from langchain_databricks import ChatDatabricks from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct") structured_llm = llm.with_structured_output( AnswerWithJustification, include_raw=True ) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # } Example: Function-calling, dict schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_databricks import ChatDatabricks from langchain_core.utils.function_calling import convert_to_openai_tool from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct") structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # } Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True): .. code-block:: from langchain_databricks import ChatDatabricks from pydantic import BaseModel class AnswerWithJustification(BaseModel): answer: str justification: str llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct") structured_llm = llm.with_structured_output( AnswerWithJustification, method="json_mode", include_raw=True ) structured_llm.invoke( "Answer the following question. " "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" "What's heavier a pound of bricks or a pound of feathers?" ) # -> { # 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'), # 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'), # 'parsing_error': None # } Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True): .. code-block:: structured_llm = llm.with_structured_output(method="json_mode", include_raw=True) structured_llm.invoke( "Answer the following question. " "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" "What's heavier a pound of bricks or a pound of feathers?" ) # -> { # 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'), # 'parsed': { # 'answer': 'They are both the same weight.', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.' # }, # 'parsing_error': None # } """ # noqa: E501 if kwargs: raise ValueError(f"Received unsupported arguments {kwargs}") is_pydantic_schema = isinstance(schema, type) and is_basemodel_subclass(schema) if method == "function_calling": if schema is None: raise ValueError( "schema must be specified when method is 'function_calling'. " "Received None." ) tool_name = convert_to_openai_tool(schema)["function"]["name"] llm = self.bind_tools([schema], tool_choice=tool_name) if is_pydantic_schema: output_parser: OutputParserLike = PydanticToolsParser( tools=[schema], # type: ignore[list-item] first_tool_only=True, # type: ignore[list-item] ) else: output_parser = JsonOutputKeyToolsParser( key_name=tool_name, first_tool_only=True ) elif method == "json_mode": llm = self.bind(response_format={"type": "json_object"}) output_parser = ( PydanticOutputParser(pydantic_object=schema) # type: ignore[arg-type] if is_pydantic_schema else JsonOutputParser() ) else: raise ValueError( f"Unrecognized method argument. Expected one of 'function_calling' or " f"'json_mode'. Received: '{method}'" ) if include_raw: parser_assign = RunnablePassthrough.assign( parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None ) parser_none = RunnablePassthrough.assign(parsed=lambda _: None) parser_with_fallback = parser_assign.with_fallbacks( [parser_none], exception_key="parsing_error" ) return RunnableMap(raw=llm) | parser_with_fallback else: return llm | output_parser
@property def _identifying_params(self) -> Dict[str, Any]: return self._default_params def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model FOR THE CALLBACKS.""" return { **self._default_params, **super()._get_invocation_params(stop=stop, **kwargs), } @property def _llm_type(self) -> str: """Return type of chat model.""" return "chat-databricks"
### Conversion function to convert Pydantic models to dictionaries and vice versa. ### def _convert_message_to_dict(message: BaseMessage) -> dict: message_dict = {"content": message.content} # NB: We don't propagate 'name' field from input message to the endpoint because # FMAPI doesn't support it. We should update the endpoints to be compatible with # OpenAI and then we can uncomment the following code. # if (name := message.name or message.additional_kwargs.get("name")) is not None: # message_dict["name"] = name if isinstance(message, ChatMessage): return {"role": message.role, **message_dict} elif isinstance(message, HumanMessage): return {"role": "user", **message_dict} elif isinstance(message, AIMessage): if tool_calls := _get_tool_calls_from_ai_message(message): message_dict["tool_calls"] = tool_calls # type: ignore[assignment] # If tool calls present, content null value should be None not empty string. message_dict["content"] = message_dict["content"] or None # type: ignore[assignment] return {"role": "assistant", **message_dict} elif isinstance(message, SystemMessage): return {"role": "system", **message_dict} elif isinstance(message, ToolMessage): return { "role": "tool", "tool_call_id": message.tool_call_id, **message_dict, } elif ( isinstance(message, FunctionMessage) or "function_call" in message.additional_kwargs ): raise ValueError( "Function messages are not supported by Databricks. Please" " create a feature request at https://github.com/mlflow/mlflow/issues." ) else: raise ValueError(f"Got unknown message type: {type(message)}") def _get_tool_calls_from_ai_message(message: AIMessage) -> List[Dict]: tool_calls = [ { "type": "function", "id": tc["id"], "function": { "name": tc["name"], "arguments": json.dumps(tc["args"]), }, } for tc in message.tool_calls ] invalid_tool_calls = [ { "type": "function", "id": tc["id"], "function": { "name": tc["name"], "arguments": tc["args"], }, } for tc in message.invalid_tool_calls ] if tool_calls or invalid_tool_calls: return tool_calls + invalid_tool_calls # Get tool calls from additional kwargs if present. return [ { k: v for k, v in tool_call.items() # type: ignore[union-attr] if k in {"id", "type", "function"} } for tool_call in message.additional_kwargs.get("tool_calls", []) ] def _convert_dict_to_message(_dict: Dict) -> BaseMessage: role = _dict["role"] content = _dict.get("content") content = content if content is not None else "" if role == "user": return HumanMessage(content=content) elif role == "system": return SystemMessage(content=content) elif role == "assistant": additional_kwargs: Dict = {} tool_calls = [] invalid_tool_calls = [] if raw_tool_calls := _dict.get("tool_calls"): additional_kwargs["tool_calls"] = raw_tool_calls for raw_tool_call in raw_tool_calls: try: tool_calls.append(parse_tool_call(raw_tool_call, return_id=True)) except Exception as e: invalid_tool_calls.append( make_invalid_tool_call(raw_tool_call, str(e)) ) return AIMessage( content=content, additional_kwargs=additional_kwargs, id=_dict.get("id"), tool_calls=tool_calls, invalid_tool_calls=invalid_tool_calls, ) else: return ChatMessage(content=content, role=role) def _convert_dict_to_message_chunk( _dict: Mapping[str, Any], default_role: str, usage: Optional[Dict[str, Any]] = None, ) -> BaseMessageChunk: role = _dict.get("role", default_role) content = _dict.get("content") content = content if content is not None else "" if role == "user": return HumanMessageChunk(content=content) elif role == "system": return SystemMessageChunk(content=content) elif role == "tool": return ToolMessageChunk( content=content, tool_call_id=_dict["tool_call_id"], id=_dict.get("id") ) elif role == "assistant": additional_kwargs: Dict = {} tool_call_chunks = [] if raw_tool_calls := _dict.get("tool_calls"): additional_kwargs["tool_calls"] = raw_tool_calls try: tool_call_chunks = [ tool_call_chunk( name=tc["function"].get("name"), args=tc["function"].get("arguments"), id=tc.get("id"), index=tc["index"], ) for tc in raw_tool_calls ] except KeyError: pass usage_metadata = UsageMetadata(**usage) if usage else None # type: ignore return AIMessageChunk( content=content, additional_kwargs=additional_kwargs, id=_dict.get("id"), tool_call_chunks=tool_call_chunks, usage_metadata=usage_metadata, ) else: return ChatMessageChunk(content=content, role=role)