from __future__ import annotations
import asyncio
import json
import logging
import re
import uuid
from enum import Enum
from functools import partial
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Tuple,
Type,
)
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VST, VectorStore
from langchain_databricks.utils import maximal_marginal_relevance
logger = logging.getLogger(__name__)
[docs]
class IndexType(str, Enum):
DIRECT_ACCESS = "DIRECT_ACCESS"
DELTA_SYNC = "DELTA_SYNC"
_DIRECT_ACCESS_ONLY_MSG = "`%s` is only supported for direct-access index."
_NON_MANAGED_EMB_ONLY_MSG = (
"`%s` is not supported for index with Databricks-managed embeddings."
)
_INDEX_NAME_PATTERN = re.compile(r"^[a-zA-Z0-9_]+\.[a-zA-Z0-9_]+\.[a-zA-Z0-9_]+$")
[docs]
class DatabricksVectorSearch(VectorStore):
"""Databricks vector store integration.
Setup:
Install ``langchain-databricks`` and ``databricks-vectorsearch`` python packages.
.. code-block:: bash
pip install -U langchain-databricks databricks-vectorsearch
If you don't have a Databricks Vector Search endpoint already, you can create one by following the instructions here: https://docs.databricks.com/en/generative-ai/create-query-vector-search.html
If you are outside Databricks, set the Databricks workspace
hostname and personal access token to environment variables:
.. code-block:: bash
export DATABRICKS_HOSTNAME="https://your-databricks-workspace"
export DATABRICKS_TOKEN="your-personal-access-token"
Key init args — indexing params:
index_name: The name of the index to use. Format: "catalog.schema.index".
endpoint: The name of the Databricks Vector Search endpoint. If not specified,
the endpoint name is automatically inferred based on the index name.
.. note::
If you are using `databricks-vectorsearch` version < 0.35, the `endpoint` parameter
is required when initializing the vector store.
.. code-block:: python
vector_store = DatabricksVectorSearch(
endpoint="<your-endpoint-name>",
index_name="<your-index-name>",
...
)
embedding: The embedding model.
Required for direct-access index or delta-sync index
with self-managed embeddings.
text_column: The name of the text column to use for the embeddings.
Required for direct-access index or delta-sync index
with self-managed embeddings.
Make sure the text column specified is in the index.
columns: The list of column names to get when doing the search.
Defaults to ``[primary_key, text_column]``.
Instantiate:
`DatabricksVectorSearch` supports two types of indexes:
* **Delta Sync Index** automatically syncs with a source Delta Table, automatically and incrementally updating the index as the underlying data in the Delta Table changes.
* **Direct Vector Access Index** supports direct read and write of vectors and metadata. The user is responsible for updating this table using the REST API or the Python SDK.
Also for delta-sync index, you can choose to use Databricks-managed embeddings or self-managed embeddings (via LangChain embeddings classes).
If you are using a delta-sync index with Databricks-managed embeddings:
.. code-block:: python
from langchain_databricks.vectorstores import DatabricksVectorSearch
vector_store = DatabricksVectorSearch(
index_name="<your-index-name>"
)
If you are using a direct-access index or a delta-sync index with self-managed embeddings,
you also need to provide the embedding model and text column in your source table to
use for the embeddings:
.. code-block:: python
from langchain_openai import OpenAIEmbeddings
vector_store = DatabricksVectorSearch(
index_name="<your-index-name>",
embedding=OpenAIEmbeddings(),
text_column="document_content"
)
Add Documents:
.. code-block:: python
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")
documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
Delete Documents:
.. code-block:: python
vector_store.delete(ids=["3"])
.. note::
The `delete` method is only supported for direct-access index.
Search:
.. code-block:: python
results = vector_store.similarity_search(query="thud",k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* thud [{'id': '2'}]
.. note:
By default, similarity search only returns the primary key and text column.
If you want to retrieve the custom metadata associated with the document,
pass the additional columns in the `columns` parameter when initializing the vector store.
.. code-block:: python
vector_store = DatabricksVectorSearch(
endpoint="<your-endpoint-name>",
index_name="<your-index-name>",
columns=["baz", "bar"],
)
vector_store.similarity_search(query="thud",k=1)
# Output: * thud [{'bar': 'baz', 'baz': None, 'id': '2'}]
Search with filter:
.. code-block:: python
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* thud [{'id': '2'}]
Search with score:
.. code-block:: python
results = vector_store.similarity_search_with_score(query="qux",k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* [SIM=0.748804] foo [{'id': '1'}]
Async:
.. code-block:: python
# add documents
await vector_store.aadd_documents(documents=documents, ids=ids)
# delete documents
await vector_store.adelete(ids=["3"])
# search
results = vector_store.asimilarity_search(query="thud",k=1)
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
for doc,score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* [SIM=0.748807] foo [{'id': '1'}]
Use as Retriever:
.. code-block:: python
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
.. code-block:: python
[Document(metadata={'id': '2'}, page_content='thud')]
""" # noqa: E501
[docs]
def __init__(
self,
index_name: str,
endpoint: Optional[str] = None,
embedding: Optional[Embeddings] = None,
text_column: Optional[str] = None,
columns: Optional[List[str]] = None,
):
if not (isinstance(index_name, str) and _INDEX_NAME_PATTERN.match(index_name)):
raise ValueError(
"The `index_name` parameter must be a string in the format "
f"'catalog.schema.index'. Received: {index_name}"
)
try:
from databricks.vector_search.client import ( # type: ignore[import]
VectorSearchClient,
)
except ImportError as e:
raise ImportError(
"Could not import databricks-vectorsearch python package. "
"Please install it with `pip install databricks-vectorsearch`."
) from e
try:
self.index = VectorSearchClient().get_index(
endpoint_name=endpoint, index_name=index_name
)
except Exception as e:
if endpoint is None and "Wrong vector search endpoint" in str(e):
raise ValueError(
"The `endpoint` parameter is required for instantiating "
"DatabricksVectorSearch with the `databricks-vectorsearch` "
"version earlier than 0.35. Please provide the endpoint "
"name or upgrade to version 0.35 or later."
) from e
else:
raise
self._index_details = IndexDetails(self.index)
_validate_embedding(embedding, self._index_details)
self._embeddings = embedding
self._text_column = _validate_and_get_text_column(
text_column, self._index_details
)
self._columns = _validate_and_get_return_columns(
columns or [], self._text_column, self._index_details
)
self._primary_key = self._index_details.primary_key
@property
def embeddings(self) -> Optional[Embeddings]:
"""Access the query embedding object if available."""
return self._embeddings
[docs]
@classmethod
def from_texts(
cls: Type[VST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict]] = None,
**kwargs: Any,
) -> VST:
raise NotImplementedError(
"`from_texts` is not supported. "
"Use `add_texts` to add to existing direct-access index."
)
[docs]
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[Dict]] = None,
ids: Optional[List[Any]] = None,
**kwargs: Any,
) -> List[str]:
"""Add texts to the index.
.. note::
This method is only supported for a direct-access index.
Args:
texts: List of texts to add.
metadatas: List of metadata for each text. Defaults to None.
ids: List of ids for each text. Defaults to None.
If not provided, a random uuid will be generated for each text.
Returns:
List of ids from adding the texts into the index.
"""
if self._index_details.is_delta_sync_index():
raise NotImplementedError(_DIRECT_ACCESS_ONLY_MSG % "add_texts")
# Wrap to list if input texts is a single string
if isinstance(texts, str):
texts = [texts]
texts = list(texts)
vectors = self._embeddings.embed_documents(texts) # type: ignore[union-attr]
ids = ids or [str(uuid.uuid4()) for _ in texts]
metadatas = metadatas or [{} for _ in texts]
updates = [
{
self._primary_key: id_,
self._text_column: text,
self._index_details.embedding_vector_column["name"]: vector,
**metadata,
}
for text, vector, id_, metadata in zip(texts, vectors, ids, metadatas)
]
upsert_resp = self.index.upsert(updates)
if upsert_resp.get("status") in ("PARTIAL_SUCCESS", "FAILURE"):
failed_ids = upsert_resp.get("result", dict()).get(
"failed_primary_keys", []
)
if upsert_resp.get("status") == "FAILURE":
logger.error("Failed to add texts to the index.")
else:
logger.warning("Some texts failed to be added to the index.")
return [id_ for id_ in ids if id_ not in failed_ids]
return ids
[docs]
async def aadd_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.add_texts, **kwargs), texts, metadatas
)
[docs]
def delete(self, ids: Optional[List[Any]] = None, **kwargs: Any) -> Optional[bool]:
"""Delete documents from the index.
.. note::
This method is only supported for a direct-access index.
Args:
ids: List of ids of documents to delete.
Returns:
True if successful.
"""
if self._index_details.is_delta_sync_index():
raise NotImplementedError(_DIRECT_ACCESS_ONLY_MSG % "delete")
if ids is None:
raise ValueError("ids must be provided.")
self.index.delete(ids)
return True
[docs]
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
*,
query_type: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filters to apply to the query. Defaults to None.
query_type: The type of this query. Supported values are "ANN" and "HYBRID".
Returns:
List of Documents most similar to the embedding.
"""
docs_with_score = self.similarity_search_with_score(
query=query,
k=k,
filter=filter,
query_type=query_type,
**kwargs,
)
return [doc for doc, _ in docs_with_score]
[docs]
async def asimilarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search, query, k=k, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
*,
query_type: Optional[str] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filters to apply to the query. Defaults to None.
query_type: The type of this query. Supported values are "ANN" and "HYBRID".
Returns:
List of Documents most similar to the embedding and score for each.
"""
if self._index_details.is_databricks_managed_embeddings():
query_text = query
query_vector = None
else:
# The value for `query_text` needs to be specified only for hybrid search.
if query_type is not None and query_type.upper() == "HYBRID":
query_text = query
else:
query_text = None
query_vector = self._embeddings.embed_query(query) # type: ignore[union-attr]
search_resp = self.index.similarity_search(
columns=self._columns,
query_text=query_text,
query_vector=query_vector,
filters=filter,
num_results=k,
query_type=query_type,
)
return self._parse_search_response(search_resp)
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
Databricks Vector search uses a normalized score 1/(1+d) where d
is the L2 distance. Hence, we simply return the identity function.
"""
return lambda score: score
[docs]
async def asimilarity_search_with_score(
self, *args: Any, **kwargs: Any
) -> List[Tuple[Document, float]]:
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search_with_score, *args, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs]
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Any] = None,
*,
query_type: Optional[str] = None,
query: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filters to apply to the query. Defaults to None.
query_type: The type of this query. Supported values are "ANN" and "HYBRID".
Returns:
List of Documents most similar to the embedding.
"""
if self._index_details.is_databricks_managed_embeddings():
raise NotImplementedError(
_NON_MANAGED_EMB_ONLY_MSG % "similarity_search_by_vector"
)
docs_with_score = self.similarity_search_by_vector_with_score(
embedding=embedding,
k=k,
filter=filter,
query_type=query_type,
query=query,
**kwargs,
)
return [doc for doc, _ in docs_with_score]
[docs]
async def asimilarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search_by_vector, embedding, k=k, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs]
def similarity_search_by_vector_with_score(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Any] = None,
*,
query_type: Optional[str] = None,
query: Optional[str] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to embedding vector, along with scores.
.. note::
This method is not supported for index with Databricks-managed embeddings.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filters to apply to the query. Defaults to None.
query_type: The type of this query. Supported values are "ANN" and "HYBRID".
Returns:
List of Documents most similar to the embedding and score for each.
"""
if self._index_details.is_databricks_managed_embeddings():
raise NotImplementedError(
_NON_MANAGED_EMB_ONLY_MSG % "similarity_search_by_vector_with_score"
)
if query_type is not None and query_type.upper() == "HYBRID":
if query is None:
raise ValueError(
"A value for `query` must be specified for hybrid search."
)
query_text = query
else:
if query is not None:
raise ValueError(
(
"Cannot specify both `embedding` and "
'`query` unless `query_type="HYBRID"'
)
)
query_text = None
search_resp = self.index.similarity_search(
columns=self._columns,
query_vector=embedding,
query_text=query_text,
filters=filter,
num_results=k,
query_type=query_type,
)
return self._parse_search_response(search_resp)
[docs]
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, Any]] = None,
*,
query_type: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
.. note::
This method is not supported for index with Databricks-managed embeddings.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filters to apply to the query. Defaults to None.
query_type: The type of this query. Supported values are "ANN" and "HYBRID".
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self._index_details.is_databricks_managed_embeddings():
raise NotImplementedError(
_NON_MANAGED_EMB_ONLY_MSG % "max_marginal_relevance_search"
)
query_vector = self._embeddings.embed_query(query) # type: ignore[union-attr]
docs = self.max_marginal_relevance_search_by_vector(
query_vector,
k,
fetch_k,
lambda_mult=lambda_mult,
filter=filter,
query_type=query_type,
)
return docs
[docs]
async def amax_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(
self.max_marginal_relevance_search,
query,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
**kwargs,
)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs]
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Any] = None,
*,
query_type: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
.. note::
This method is not supported for index with Databricks-managed embeddings.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filters to apply to the query. Defaults to None.
query_type: The type of this query. Supported values are "ANN" and "HYBRID".
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self._index_details.is_databricks_managed_embeddings():
raise NotImplementedError(
_NON_MANAGED_EMB_ONLY_MSG % "max_marginal_relevance_search_by_vector"
)
embedding_column = self._index_details.embedding_vector_column["name"]
search_resp = self.index.similarity_search(
columns=list(set(self._columns + [embedding_column])),
query_text=None,
query_vector=embedding,
filters=filter,
num_results=fetch_k,
query_type=query_type,
)
embeddings_result_index = (
search_resp.get("manifest").get("columns").index({"name": embedding_column})
)
embeddings = [
doc[embeddings_result_index]
for doc in search_resp.get("result").get("data_array")
]
mmr_selected = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32),
embeddings,
k=k,
lambda_mult=lambda_mult,
)
ignore_cols: List = (
[embedding_column] if embedding_column not in self._columns else []
)
candidates = self._parse_search_response(search_resp, ignore_cols=ignore_cols)
selected_results = [r[0] for i, r in enumerate(candidates) if i in mmr_selected]
return selected_results
[docs]
async def amax_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
raise NotImplementedError
def _parse_search_response(
self, search_resp: Dict, ignore_cols: Optional[List[str]] = None
) -> List[Tuple[Document, float]]:
"""Parse the search response into a list of Documents with score."""
if ignore_cols is None:
ignore_cols = []
columns = [
col["name"]
for col in search_resp.get("manifest", dict()).get("columns", [])
]
docs_with_score = []
for result in search_resp.get("result", dict()).get("data_array", []):
doc_id = result[columns.index(self._primary_key)]
text_content = result[columns.index(self._text_column)]
ignore_cols = [self._primary_key, self._text_column] + ignore_cols
metadata = {
col: value
for col, value in zip(columns[:-1], result[:-1])
if col not in ignore_cols
}
metadata[self._primary_key] = doc_id
score = result[-1]
doc = Document(page_content=text_content, metadata=metadata)
docs_with_score.append((doc, score))
return docs_with_score
def _validate_and_get_text_column(
text_column: Optional[str], index_details: IndexDetails
) -> str:
if index_details.is_databricks_managed_embeddings():
index_source_column: str = index_details.embedding_source_column["name"]
# check if input text column matches the source column of the index
if text_column is not None:
raise ValueError(
f"The index '{index_details.name}' has the source column configured as "
f"'{index_source_column}'. Do not pass the `text_column` parameter."
)
return index_source_column
else:
if text_column is None:
raise ValueError("The `text_column` parameter is required for this index.")
return text_column
def _validate_and_get_return_columns(
columns: List[str], text_column: str, index_details: IndexDetails
) -> List[str]:
"""
Get a list of columns to retrieve from the index.
If the index is direct-access index, validate the given columns against the schema.
"""
# add primary key column and source column if not in columns
if index_details.primary_key not in columns:
columns.append(index_details.primary_key)
if text_column and text_column not in columns:
columns.append(text_column)
# Validate specified columns are in the index
if index_details.is_direct_access_index() and (
index_schema := index_details.schema
):
if missing_columns := [c for c in columns if c not in index_schema]:
raise ValueError(
"Some columns specified in `columns` are not "
f"in the index schema: {missing_columns}"
)
return columns
def _validate_embedding(
embedding: Optional[Embeddings], index_details: IndexDetails
) -> None:
if index_details.is_databricks_managed_embeddings():
if embedding is not None:
raise ValueError(
f"The index '{index_details.name}' uses Databricks-managed embeddings. "
"Do not pass the `embedding` parameter when initializing vector store."
)
else:
if not embedding:
raise ValueError(
"The `embedding` parameter is required for a direct-access index "
"or delta-sync index with self-managed embedding."
)
_validate_embedding_dimension(embedding, index_details)
def _validate_embedding_dimension(
embeddings: Embeddings, index_details: IndexDetails
) -> None:
"""validate if the embedding dimension matches with the index's configuration."""
if index_embedding_dimension := index_details.embedding_vector_column.get(
"embedding_dimension"
):
# Infer the embedding dimension from the embedding function."""
actual_dimension = len(embeddings.embed_query("test"))
if actual_dimension != index_embedding_dimension:
raise ValueError(
f"The specified embedding model's dimension '{actual_dimension}' does "
f"not match with the index configuration '{index_embedding_dimension}'."
)
[docs]
class IndexDetails:
"""An utility class to store the configuration details of an index."""
[docs]
def __init__(self, index: Any):
self._index_details = index.describe()
@property
def name(self) -> str:
return self._index_details["name"]
@property
def schema(self) -> Optional[Dict]:
if self.is_direct_access_index():
schema_json = self.index_spec.get("schema_json")
if schema_json is not None:
return json.loads(schema_json)
return None
@property
def primary_key(self) -> str:
return self._index_details["primary_key"]
@property
def index_spec(self) -> Dict:
return (
self._index_details.get("delta_sync_index_spec", {})
if self.is_delta_sync_index()
else self._index_details.get("direct_access_index_spec", {})
)
@property
def embedding_vector_column(self) -> Dict:
if vector_columns := self.index_spec.get("embedding_vector_columns"):
return vector_columns[0]
return {}
@property
def embedding_source_column(self) -> Dict:
if source_columns := self.index_spec.get("embedding_source_columns"):
return source_columns[0]
return {}
[docs]
def is_delta_sync_index(self) -> bool:
return self._index_details["index_type"] == IndexType.DELTA_SYNC.value
[docs]
def is_direct_access_index(self) -> bool:
return self._index_details["index_type"] == IndexType.DIRECT_ACCESS.value
[docs]
def is_databricks_managed_embeddings(self) -> bool:
return (
self.is_delta_sync_index()
and self.embedding_source_column.get("name") is not None
)