import logging
from typing import (
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Sequence,
Union,
cast,
)
from elasticsearch import Elasticsearch
from langchain_core.callbacks import (
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_elasticsearch._utilities import with_user_agent_header
from langchain_elasticsearch.client import create_elasticsearch_client
logger = logging.getLogger(__name__)
[docs]
class ElasticsearchRetriever(BaseRetriever):
"""
Elasticsearch retriever
Args:
es_client: Elasticsearch client connection. Alternatively you can use the
`from_es_params` method with parameters to initialize the client.
index_name: The name of the index to query. Can also be a list of names.
body_func: Function to create an Elasticsearch DSL query body from a search
string. The returned query body must fit what you would normally send in a
POST request the the _search endpoint. If applicable, it also includes
parameters the `size` parameter etc.
content_field: The document field name that contains the page content. If
multiple indices are queried, specify a dict {index_name: field_name} here.
document_mapper: Function to map Elasticsearch hits to LangChain Documents.
"""
_expects_other_args = True
es_client: Elasticsearch
index_name: Union[str, Sequence[str]]
body_func: Callable[[str], Dict]
content_field: Optional[Union[str, Mapping[str, str]]] = None
document_mapper: Optional[Callable[[Mapping], Document]] = None
def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
if self.content_field is None and self.document_mapper is None:
raise ValueError("One of content_field or document_mapper must be defined.")
if self.content_field is not None and self.document_mapper is not None:
raise ValueError(
"Both content_field and document_mapper are defined. "
"Please provide only one."
)
if not self.document_mapper:
if isinstance(self.content_field, str):
self.document_mapper = self._single_field_mapper
elif isinstance(self.content_field, Mapping):
self.document_mapper = self._multi_field_mapper
else:
raise ValueError(
"unknown type for content_field, expected string or dict."
)
self.es_client = with_user_agent_header(self.es_client, "langchain-py-r")
[docs]
@staticmethod
def from_es_params(
index_name: Union[str, Sequence[str]],
body_func: Callable[[str], Dict],
content_field: Optional[Union[str, Mapping[str, str]]] = None,
document_mapper: Optional[Callable[[Mapping], Document]] = None,
url: Optional[str] = None,
cloud_id: Optional[str] = None,
api_key: Optional[str] = None,
username: Optional[str] = None,
password: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
) -> "ElasticsearchRetriever":
client = None
try:
client = create_elasticsearch_client(
url=url,
cloud_id=cloud_id,
api_key=api_key,
username=username,
password=password,
params=params,
)
except Exception as err:
logger.error(f"Error connecting to Elasticsearch: {err}")
raise err
return ElasticsearchRetriever(
es_client=client,
index_name=index_name,
body_func=body_func,
content_field=content_field,
document_mapper=document_mapper,
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
) -> List[Document]:
if not self.es_client or not self.document_mapper:
raise ValueError("faulty configuration") # should not happen
body = self.body_func(query, **kwargs)
results = self.es_client.search(index=self.index_name, body=body)
return [self.document_mapper(hit) for hit in results["hits"]["hits"]]
def _single_field_mapper(self, hit: Mapping[str, Any]) -> Document:
content = hit["_source"].pop(self.content_field)
return Document(page_content=content, metadata=hit)
def _multi_field_mapper(self, hit: Mapping[str, Any]) -> Document:
self.content_field = cast(Mapping, self.content_field)
field = self.content_field[hit["_index"]]
content = hit["_source"].pop(field)
return Document(page_content=content, metadata=hit)