[docs]defcreate_csv_agent(llm:LanguageModelLike,path:Union[str,IOBase,List[Union[str,IOBase]]],pandas_kwargs:Optional[dict]=None,**kwargs:Any,)->AgentExecutor:"""Create pandas dataframe agent by loading csv to a dataframe. Args: llm: Language model to use for the agent. path: A string path, file-like object or a list of string paths/file-like objects that can be read in as pandas DataFrames with pd.read_csv(). pandas_kwargs: Named arguments to pass to pd.read_csv(). kwargs: Additional kwargs to pass to langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent(). Returns: An AgentExecutor with the specified agent_type agent and access to a PythonAstREPLTool with the loaded DataFrame(s) and any user-provided extra_tools. Example: .. code-block:: python from langchain_openai import ChatOpenAI from langchain_experimental.agents import create_csv_agent llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) agent_executor = create_pandas_dataframe_agent( llm, "titanic.csv", agent_type="openai-tools", verbose=True ) """# noqa: E501try:importpandasaspdexceptImportError:raiseImportError("pandas package not found, please install with `pip install pandas`.")_kwargs=pandas_kwargsor{}ifisinstance(path,(str,IOBase)):df=pd.read_csv(path,**_kwargs)elifisinstance(path,list):df=[]foriteminpath:ifnotisinstance(item,(str,IOBase)):raiseValueError(f"Expected str or file-like object, got {type(path)}")df.append(pd.read_csv(item,**_kwargs))else:raiseValueError(f"Expected str, list, or file-like object, got {type(path)}")returncreate_pandas_dataframe_agent(llm,df,**kwargs)