Source code for langchain_experimental.chat_models.llm_wrapper
"""Generic Wrapper for chat LLMs, with sample implementationsfor Llama-2-chat, Llama-2-instruct and Vicuna models."""fromtypingimportAny,List,Optional,castfromlangchain.schemaimport(AIMessage,BaseMessage,ChatGeneration,ChatResult,HumanMessage,LLMResult,SystemMessage,)fromlangchain_core.callbacks.managerimport(AsyncCallbackManagerForLLMRun,CallbackManagerForLLMRun,)fromlangchain_core.language_modelsimportLLM,BaseChatModelDEFAULT_SYSTEM_PROMPT="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""# noqa: E501
[docs]classChatWrapper(BaseChatModel):"""Wrapper for chat LLMs."""llm:LLMsys_beg:strsys_end:strai_n_beg:strai_n_end:strusr_n_beg:strusr_n_end:strusr_0_beg:Optional[str]=Noneusr_0_end:Optional[str]=Nonesystem_message:SystemMessage=SystemMessage(content=DEFAULT_SYSTEM_PROMPT)def_generate(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[CallbackManagerForLLMRun]=None,**kwargs:Any,)->ChatResult:llm_input=self._to_chat_prompt(messages)llm_result=self.llm._generate(prompts=[llm_input],stop=stop,run_manager=run_manager,**kwargs)returnself._to_chat_result(llm_result)asyncdef_agenerate(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[AsyncCallbackManagerForLLMRun]=None,**kwargs:Any,)->ChatResult:llm_input=self._to_chat_prompt(messages)llm_result=awaitself.llm._agenerate(prompts=[llm_input],stop=stop,run_manager=run_manager,**kwargs)returnself._to_chat_result(llm_result)def_to_chat_prompt(self,messages:List[BaseMessage],)->str:"""Convert a list of messages into a prompt format expected by wrapped LLM."""ifnotmessages:raiseValueError("at least one HumanMessage must be provided")ifnotisinstance(messages[0],SystemMessage):messages=[self.system_message]+messagesifnotisinstance(messages[1],HumanMessage):raiseValueError("messages list must start with a SystemMessage or UserMessage")ifnotisinstance(messages[-1],HumanMessage):raiseValueError("last message must be a HumanMessage")prompt_parts=[]ifself.usr_0_begisNone:self.usr_0_beg=self.usr_n_begifself.usr_0_endisNone:self.usr_0_end=self.usr_n_endprompt_parts.append(self.sys_beg+cast(str,messages[0].content)+self.sys_end)prompt_parts.append(self.usr_0_beg+cast(str,messages[1].content)+self.usr_0_end)forai_message,human_messageinzip(messages[2::2],messages[3::2]):ifnotisinstance(ai_message,AIMessage)ornotisinstance(human_message,HumanMessage):raiseValueError("messages must be alternating human- and ai-messages, ""optionally prepended by a system message")prompt_parts.append(self.ai_n_beg+cast(str,ai_message.content)+self.ai_n_end)prompt_parts.append(self.usr_n_beg+cast(str,human_message.content)+self.usr_n_end)return"".join(prompt_parts)@staticmethoddef_to_chat_result(llm_result:LLMResult)->ChatResult:chat_generations=[]forginllm_result.generations[0]:chat_generation=ChatGeneration(message=AIMessage(content=g.text),generation_info=g.generation_info)chat_generations.append(chat_generation)returnChatResult(generations=chat_generations,llm_output=llm_result.llm_output)
[docs]classLlama2Chat(ChatWrapper):"""Wrapper for Llama-2-chat model."""@propertydef_llm_type(self)->str:return"llama-2-chat"sys_beg:str="<s>[INST] <<SYS>>\n"sys_end:str="\n<</SYS>>\n\n"ai_n_beg:str=" "ai_n_end:str=" </s>"usr_n_beg:str="<s>[INST] "usr_n_end:str=" [/INST]"usr_0_beg:str=""usr_0_end:str=" [/INST]"