Source code for langchain_experimental.graph_transformers.llm

import asyncio
import json
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union, cast

from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
from langchain_core.documents import Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import SystemMessage
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.prompts import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    PromptTemplate,
)
from langchain_core.runnables import RunnableConfig
from pydantic import BaseModel, Field, create_model

DEFAULT_NODE_TYPE = "Node"

examples = [
    {
        "text": (
            "Adam is a software engineer in Microsoft since 2009, "
            "and last year he got an award as the Best Talent"
        ),
        "head": "Adam",
        "head_type": "Person",
        "relation": "WORKS_FOR",
        "tail": "Microsoft",
        "tail_type": "Company",
    },
    {
        "text": (
            "Adam is a software engineer in Microsoft since 2009, "
            "and last year he got an award as the Best Talent"
        ),
        "head": "Adam",
        "head_type": "Person",
        "relation": "HAS_AWARD",
        "tail": "Best Talent",
        "tail_type": "Award",
    },
    {
        "text": (
            "Microsoft is a tech company that provide "
            "several products such as Microsoft Word"
        ),
        "head": "Microsoft Word",
        "head_type": "Product",
        "relation": "PRODUCED_BY",
        "tail": "Microsoft",
        "tail_type": "Company",
    },
    {
        "text": "Microsoft Word is a lightweight app that accessible offline",
        "head": "Microsoft Word",
        "head_type": "Product",
        "relation": "HAS_CHARACTERISTIC",
        "tail": "lightweight app",
        "tail_type": "Characteristic",
    },
    {
        "text": "Microsoft Word is a lightweight app that accessible offline",
        "head": "Microsoft Word",
        "head_type": "Product",
        "relation": "HAS_CHARACTERISTIC",
        "tail": "accessible offline",
        "tail_type": "Characteristic",
    },
]

system_prompt = (
    "# Knowledge Graph Instructions for GPT-4\n"
    "## 1. Overview\n"
    "You are a top-tier algorithm designed for extracting information in structured "
    "formats to build a knowledge graph.\n"
    "Try to capture as much information from the text as possible without "
    "sacrificing accuracy. Do not add any information that is not explicitly "
    "mentioned in the text.\n"
    "- **Nodes** represent entities and concepts.\n"
    "- The aim is to achieve simplicity and clarity in the knowledge graph, making it\n"
    "accessible for a vast audience.\n"
    "## 2. Labeling Nodes\n"
    "- **Consistency**: Ensure you use available types for node labels.\n"
    "Ensure you use basic or elementary types for node labels.\n"
    "- For example, when you identify an entity representing a person, "
    "always label it as **'person'**. Avoid using more specific terms "
    "like 'mathematician' or 'scientist'."
    "- **Node IDs**: Never utilize integers as node IDs. Node IDs should be "
    "names or human-readable identifiers found in the text.\n"
    "- **Relationships** represent connections between entities or concepts.\n"
    "Ensure consistency and generality in relationship types when constructing "
    "knowledge graphs. Instead of using specific and momentary types "
    "such as 'BECAME_PROFESSOR', use more general and timeless relationship types "
    "like 'PROFESSOR'. Make sure to use general and timeless relationship types!\n"
    "## 3. Coreference Resolution\n"
    "- **Maintain Entity Consistency**: When extracting entities, it's vital to "
    "ensure consistency.\n"
    'If an entity, such as "John Doe", is mentioned multiple times in the text '
    'but is referred to by different names or pronouns (e.g., "Joe", "he"),'
    "always use the most complete identifier for that entity throughout the "
    'knowledge graph. In this example, use "John Doe" as the entity ID.\n'
    "Remember, the knowledge graph should be coherent and easily understandable, "
    "so maintaining consistency in entity references is crucial.\n"
    "## 4. Strict Compliance\n"
    "Adhere to the rules strictly. Non-compliance will result in termination."
)


[docs] def get_default_prompt( additional_instructions: str = "", ) -> ChatPromptTemplate: return ChatPromptTemplate.from_messages( [ ("system", system_prompt), ( "human", additional_instructions + " Tip: Make sure to answer in the correct format and do " "not include any explanations. " "Use the given format to extract information from the " "following input: {input}", ), ] )
def _get_additional_info(input_type: str) -> str: # Check if the input_type is one of the allowed values if input_type not in ["node", "relationship", "property"]: raise ValueError("input_type must be 'node', 'relationship', or 'property'") # Perform actions based on the input_type if input_type == "node": return ( "Ensure you use basic or elementary types for node labels.\n" "For example, when you identify an entity representing a person, " "always label it as **'Person'**. Avoid using more specific terms " "like 'Mathematician' or 'Scientist'" ) elif input_type == "relationship": return ( "Instead of using specific and momentary types such as " "'BECAME_PROFESSOR', use more general and timeless relationship types " "like 'PROFESSOR'. However, do not sacrifice any accuracy for generality" ) elif input_type == "property": return "" return ""
[docs] def optional_enum_field( enum_values: Optional[Union[List[str], List[Tuple[str, str, str]]]] = None, description: str = "", input_type: str = "node", llm_type: Optional[str] = None, relationship_type: Optional[str] = None, **field_kwargs: Any, ) -> Any: """Utility function to conditionally create a field with an enum constraint.""" parsed_enum_values = enum_values # We have to extract enum types from tuples if relationship_type == "tuple": parsed_enum_values = list({el[1] for el in enum_values}) # type: ignore # Only openai supports enum param if enum_values and llm_type == "openai-chat": return Field( ..., enum=parsed_enum_values, # type: ignore[call-arg] description=f"{description}. Available options are {parsed_enum_values}", **field_kwargs, ) elif enum_values: return Field( ..., description=f"{description}. Available options are {parsed_enum_values}", **field_kwargs, ) else: additional_info = _get_additional_info(input_type) return Field(..., description=description + additional_info, **field_kwargs)
class _Graph(BaseModel): nodes: Optional[List] relationships: Optional[List]
[docs] class UnstructuredRelation(BaseModel): head: str = Field( description=( "extracted head entity like Microsoft, Apple, John. " "Must use human-readable unique identifier." ) ) head_type: str = Field( description="type of the extracted head entity like Person, Company, etc" ) relation: str = Field(description="relation between the head and the tail entities") tail: str = Field( description=( "extracted tail entity like Microsoft, Apple, John. " "Must use human-readable unique identifier." ) ) tail_type: str = Field( description="type of the extracted tail entity like Person, Company, etc" )
[docs] def create_unstructured_prompt( node_labels: Optional[List[str]] = None, rel_types: Optional[Union[List[str], List[Tuple[str, str, str]]]] = None, relationship_type: Optional[str] = None, additional_instructions: Optional[str] = "", ) -> ChatPromptTemplate: node_labels_str = str(node_labels) if node_labels else "" if rel_types: if relationship_type == "tuple": rel_types_str = str(list({item[1] for item in rel_types})) else: rel_types_str = str(rel_types) else: rel_types_str = "" base_string_parts = [ "You are a top-tier algorithm designed for extracting information in " "structured formats to build a knowledge graph. Your task is to identify " "the entities and relations requested with the user prompt from a given " "text. You must generate the output in a JSON format containing a list " 'with JSON objects. Each object should have the keys: "head", ' '"head_type", "relation", "tail", and "tail_type". The "head" ' "key must contain the text of the extracted entity with one of the types " "from the provided list in the user prompt.", f'The "head_type" key must contain the type of the extracted head entity, ' f"which must be one of the types from {node_labels_str}." if node_labels else "", f'The "relation" key must contain the type of relation between the "head" ' f'and the "tail", which must be one of the relations from {rel_types_str}.' if rel_types else "", f'The "tail" key must represent the text of an extracted entity which is ' f'the tail of the relation, and the "tail_type" key must contain the type ' f"of the tail entity from {node_labels_str}." if node_labels else "", "Your task is to extract relationships from text strictly adhering " "to the provided schema. The relationships can only appear " "between specific node types are presented in the schema format " "like: (Entity1Type, RELATIONSHIP_TYPE, Entity2Type) /n" f"Provided schema is {rel_types}" if relationship_type == "tuple" else "", "Attempt to extract as many entities and relations as you can. Maintain " "Entity Consistency: When extracting entities, it's vital to ensure " 'consistency. If an entity, such as "John Doe", is mentioned multiple ' "times in the text but is referred to by different names or pronouns " '(e.g., "Joe", "he"), always use the most complete identifier for ' "that entity. The knowledge graph should be coherent and easily " "understandable, so maintaining consistency in entity references is " "crucial.", "IMPORTANT NOTES:\n- Don't add any explanation and text. ", additional_instructions, ] system_prompt = "\n".join(filter(None, base_string_parts)) system_message = SystemMessage(content=system_prompt) parser = JsonOutputParser(pydantic_object=UnstructuredRelation) human_string_parts = [ "Based on the following example, extract entities and " "relations from the provided text.\n\n", "Use the following entity types, don't use other entity " "that is not defined below:" "# ENTITY TYPES:" "{node_labels}" if node_labels else "", "Use the following relation types, don't use other relation " "that is not defined below:" "# RELATION TYPES:" "{rel_types}" if rel_types else "", "Your task is to extract relationships from text strictly adhering " "to the provided schema. The relationships can only appear " "between specific node types are presented in the schema format " "like: (Entity1Type, RELATIONSHIP_TYPE, Entity2Type) /n" f"Provided schema is {rel_types}" if relationship_type == "tuple" else "", "Below are a number of examples of text and their extracted " "entities and relationships." "{examples}\n", additional_instructions, "For the following text, extract entities and relations as " "in the provided example." "{format_instructions}\nText: {input}", ] human_prompt_string = "\n".join(filter(None, human_string_parts)) human_prompt = PromptTemplate( template=human_prompt_string, input_variables=["input"], partial_variables={ "format_instructions": parser.get_format_instructions(), "node_labels": node_labels, "rel_types": rel_types, "examples": examples, }, ) human_message_prompt = HumanMessagePromptTemplate(prompt=human_prompt) chat_prompt = ChatPromptTemplate.from_messages( [system_message, human_message_prompt] ) return chat_prompt
[docs] def create_simple_model( node_labels: Optional[List[str]] = None, rel_types: Optional[Union[List[str], List[Tuple[str, str, str]]]] = None, node_properties: Union[bool, List[str]] = False, llm_type: Optional[str] = None, relationship_properties: Union[bool, List[str]] = False, relationship_type: Optional[str] = None, ) -> Type[_Graph]: """ Create a simple graph model with optional constraints on node and relationship types. Args: node_labels (Optional[List[str]]): Specifies the allowed node types. Defaults to None, allowing all node types. rel_types (Optional[List[str]]): Specifies the allowed relationship types. Defaults to None, allowing all relationship types. node_properties (Union[bool, List[str]]): Specifies if node properties should be included. If a list is provided, only properties with keys in the list will be included. If True, all properties are included. Defaults to False. relationship_properties (Union[bool, List[str]]): Specifies if relationship properties should be included. If a list is provided, only properties with keys in the list will be included. If True, all properties are included. Defaults to False. llm_type (Optional[str]): The type of the language model. Defaults to None. Only openai supports enum param: openai-chat. Returns: Type[_Graph]: A graph model with the specified constraints. Raises: ValueError: If 'id' is included in the node or relationship properties list. """ node_fields: Dict[str, Tuple[Any, Any]] = { "id": ( str, Field(..., description="Name or human-readable unique identifier."), ), "type": ( str, optional_enum_field( node_labels, description="The type or label of the node.", input_type="node", llm_type=llm_type, ), ), } if node_properties: if isinstance(node_properties, list) and "id" in node_properties: raise ValueError("The node property 'id' is reserved and cannot be used.") # Map True to empty array node_properties_mapped: List[str] = ( [] if node_properties is True else node_properties ) class Property(BaseModel): """A single property consisting of key and value""" key: str = optional_enum_field( node_properties_mapped, description="Property key.", input_type="property", llm_type=llm_type, ) value: str = Field( ..., description=( "Extracted value. Any date value " "should be formatted as yyyy-mm-dd." ), ) node_fields["properties"] = ( Optional[List[Property]], Field(None, description="List of node properties"), ) SimpleNode = create_model("SimpleNode", **node_fields) # type: ignore relationship_fields: Dict[str, Tuple[Any, Any]] = { "source_node_id": ( str, Field( ..., description="Name or human-readable unique identifier of source node", ), ), "source_node_type": ( str, optional_enum_field( node_labels, description="The type or label of the source node.", input_type="node", llm_type=llm_type, ), ), "target_node_id": ( str, Field( ..., description="Name or human-readable unique identifier of target node", ), ), "target_node_type": ( str, optional_enum_field( node_labels, description="The type or label of the target node.", input_type="node", llm_type=llm_type, ), ), "type": ( str, optional_enum_field( rel_types, description="The type of the relationship.", input_type="relationship", llm_type=llm_type, relationship_type=relationship_type, ), ), } if relationship_properties: if ( isinstance(relationship_properties, list) and "id" in relationship_properties ): raise ValueError( "The relationship property 'id' is reserved and cannot be used." ) # Map True to empty array relationship_properties_mapped: List[str] = ( [] if relationship_properties is True else relationship_properties ) class RelationshipProperty(BaseModel): """A single property consisting of key and value""" key: str = optional_enum_field( relationship_properties_mapped, description="Property key.", input_type="property", llm_type=llm_type, ) value: str = Field( ..., description=( "Extracted value. Any date value " "should be formatted as yyyy-mm-dd." ), ) relationship_fields["properties"] = ( Optional[List[RelationshipProperty]], Field(None, description="List of relationship properties"), ) SimpleRelationship = create_model("SimpleRelationship", **relationship_fields) # type: ignore # Add a docstring to the dynamically created model if relationship_type == "tuple": SimpleRelationship.__doc__ = ( "Your task is to extract relationships from text strictly adhering " "to the provided schema. The relationships can only appear " "between specific node types are presented in the schema format " "like: (Entity1Type, RELATIONSHIP_TYPE, Entity2Type) /n" f"Provided schema is {rel_types}" ) class DynamicGraph(_Graph): """Represents a graph document consisting of nodes and relationships.""" nodes: Optional[List[SimpleNode]] = Field(description="List of nodes") # type: ignore relationships: Optional[List[SimpleRelationship]] = Field( # type: ignore description="List of relationships" ) return DynamicGraph
[docs] def map_to_base_node(node: Any) -> Node: """Map the SimpleNode to the base Node.""" properties = {} if hasattr(node, "properties") and node.properties: for p in node.properties: properties[format_property_key(p.key)] = p.value return Node(id=node.id, type=node.type, properties=properties)
[docs] def map_to_base_relationship(rel: Any) -> Relationship: """Map the SimpleRelationship to the base Relationship.""" source = Node(id=rel.source_node_id, type=rel.source_node_type) target = Node(id=rel.target_node_id, type=rel.target_node_type) properties = {} if hasattr(rel, "properties") and rel.properties: for p in rel.properties: properties[format_property_key(p.key)] = p.value return Relationship( source=source, target=target, type=rel.type, properties=properties )
def _parse_and_clean_json( argument_json: Dict[str, Any], ) -> Tuple[List[Node], List[Relationship]]: nodes = [] for node in argument_json["nodes"]: if not node.get("id"): # Id is mandatory, skip this node continue node_properties = {} if "properties" in node and node["properties"]: for p in node["properties"]: node_properties[format_property_key(p["key"])] = p["value"] nodes.append( Node( id=node["id"], type=node.get("type", DEFAULT_NODE_TYPE), properties=node_properties, ) ) relationships = [] for rel in argument_json["relationships"]: # Mandatory props if ( not rel.get("source_node_id") or not rel.get("target_node_id") or not rel.get("type") ): continue # Node type copying if needed from node list if not rel.get("source_node_type"): try: rel["source_node_type"] = [ el.get("type") for el in argument_json["nodes"] if el["id"] == rel["source_node_id"] ][0] except IndexError: rel["source_node_type"] = DEFAULT_NODE_TYPE if not rel.get("target_node_type"): try: rel["target_node_type"] = [ el.get("type") for el in argument_json["nodes"] if el["id"] == rel["target_node_id"] ][0] except IndexError: rel["target_node_type"] = DEFAULT_NODE_TYPE rel_properties = {} if "properties" in rel and rel["properties"]: for p in rel["properties"]: rel_properties[format_property_key(p["key"])] = p["value"] source_node = Node( id=rel["source_node_id"], type=rel["source_node_type"], ) target_node = Node( id=rel["target_node_id"], type=rel["target_node_type"], ) relationships.append( Relationship( source=source_node, target=target_node, type=rel["type"], properties=rel_properties, ) ) return nodes, relationships def _format_nodes(nodes: List[Node]) -> List[Node]: return [ Node( id=el.id.title() if isinstance(el.id, str) else el.id, type=el.type.capitalize() # type: ignore[arg-type] if el.type else DEFAULT_NODE_TYPE, # handle empty strings # type: ignore[arg-type] properties=el.properties, ) for el in nodes ] def _format_relationships(rels: List[Relationship]) -> List[Relationship]: return [ Relationship( source=_format_nodes([el.source])[0], target=_format_nodes([el.target])[0], type=el.type.replace(" ", "_").upper(), properties=el.properties, ) for el in rels ]
[docs] def format_property_key(s: str) -> str: words = s.split() if not words: return s first_word = words[0].lower() capitalized_words = [word.capitalize() for word in words[1:]] return "".join([first_word] + capitalized_words)
def _convert_to_graph_document( raw_schema: Dict[Any, Any], ) -> Tuple[List[Node], List[Relationship]]: # If there are validation errors if not raw_schema["parsed"]: try: try: # OpenAI type response argument_json = json.loads( raw_schema["raw"].additional_kwargs["tool_calls"][0]["function"][ "arguments" ] ) except Exception: # Google type response try: argument_json = json.loads( raw_schema["raw"].additional_kwargs["function_call"][ "arguments" ] ) except Exception: # Ollama type response argument_json = raw_schema["raw"].tool_calls[0]["args"] if isinstance(argument_json["nodes"], str): argument_json["nodes"] = json.loads(argument_json["nodes"]) if isinstance(argument_json["relationships"], str): argument_json["relationships"] = json.loads( argument_json["relationships"] ) nodes, relationships = _parse_and_clean_json(argument_json) except Exception: # If we can't parse JSON return ([], []) else: # If there are no validation errors use parsed pydantic object parsed_schema: _Graph = raw_schema["parsed"] nodes = ( [map_to_base_node(node) for node in parsed_schema.nodes if node.id] if parsed_schema.nodes else [] ) relationships = ( [ map_to_base_relationship(rel) for rel in parsed_schema.relationships if rel.type and rel.source_node_id and rel.target_node_id ] if parsed_schema.relationships else [] ) # Title / Capitalize return _format_nodes(nodes), _format_relationships(relationships)
[docs] def validate_and_get_relationship_type( allowed_relationships: Union[List[str], List[Tuple[str, str, str]]], allowed_nodes: Optional[List[str]], ) -> Optional[str]: if allowed_relationships and not isinstance(allowed_relationships, list): raise ValueError("`allowed_relationships` attribute must be a list.") # If it's an empty list if not allowed_relationships: return None # Validate list of strings if all(isinstance(item, str) for item in allowed_relationships): # Valid: all items are strings, no further checks needed. return "string" # Validate list of 3-tuples and check if first/last elements are in allowed_nodes if all( isinstance(item, tuple) and len(item) == 3 and all(isinstance(subitem, str) for subitem in item) and item[0] in allowed_nodes # type: ignore and item[2] in allowed_nodes # type: ignore for item in allowed_relationships ): # all items are 3-tuples, and the first/last elements are in allowed_nodes. return "tuple" # If the input doesn't match any of the valid cases, raise a ValueError raise ValueError( "`allowed_relationships` must be list of strings or a list of 3-item tuples. " "For tuples, the first and last elements must be in the `allowed_nodes` list." )
[docs] class LLMGraphTransformer: """Transform documents into graph-based documents using a LLM. It allows specifying constraints on the types of nodes and relationships to include in the output graph. The class supports extracting properties for both nodes and relationships. Args: llm (BaseLanguageModel): An instance of a language model supporting structured output. allowed_nodes (List[str], optional): Specifies which node types are allowed in the graph. Defaults to an empty list, allowing all node types. allowed_relationships (List[str], optional): Specifies which relationship types are allowed in the graph. Defaults to an empty list, allowing all relationship types. prompt (Optional[ChatPromptTemplate], optional): The prompt to pass to the LLM with additional instructions. strict_mode (bool, optional): Determines whether the transformer should apply filtering to strictly adhere to `allowed_nodes` and `allowed_relationships`. Defaults to True. node_properties (Union[bool, List[str]]): If True, the LLM can extract any node properties from text. Alternatively, a list of valid properties can be provided for the LLM to extract, restricting extraction to those specified. relationship_properties (Union[bool, List[str]]): If True, the LLM can extract any relationship properties from text. Alternatively, a list of valid properties can be provided for the LLM to extract, restricting extraction to those specified. ignore_tool_usage (bool): Indicates whether the transformer should bypass the use of structured output functionality of the language model. If set to True, the transformer will not use the language model's native function calling capabilities to handle structured output. Defaults to False. additional_instructions (str): Allows you to add additional instructions to the prompt without having to change the whole prompt. Example: .. code-block:: python from langchain_experimental.graph_transformers import LLMGraphTransformer from langchain_core.documents import Document from langchain_openai import ChatOpenAI llm=ChatOpenAI(temperature=0) transformer = LLMGraphTransformer( llm=llm, allowed_nodes=["Person", "Organization"]) doc = Document(page_content="Elon Musk is suing OpenAI") graph_documents = transformer.convert_to_graph_documents([doc]) """
[docs] def __init__( self, llm: BaseLanguageModel, allowed_nodes: List[str] = [], allowed_relationships: Union[List[str], List[Tuple[str, str, str]]] = [], prompt: Optional[ChatPromptTemplate] = None, strict_mode: bool = True, node_properties: Union[bool, List[str]] = False, relationship_properties: Union[bool, List[str]] = False, ignore_tool_usage: bool = False, additional_instructions: str = "", ) -> None: # Validate and check allowed relationships input self._relationship_type = validate_and_get_relationship_type( allowed_relationships, allowed_nodes ) self.allowed_nodes = allowed_nodes self.allowed_relationships = allowed_relationships self.strict_mode = strict_mode self._function_call = not ignore_tool_usage # Check if the LLM really supports structured output if self._function_call: try: llm.with_structured_output(_Graph) except NotImplementedError: self._function_call = False if not self._function_call: if node_properties or relationship_properties: raise ValueError( "The 'node_properties' and 'relationship_properties' parameters " "cannot be used in combination with a LLM that doesn't support " "native function calling." ) try: import json_repair # type: ignore self.json_repair = json_repair except ImportError: raise ImportError( "Could not import json_repair python package. " "Please install it with `pip install json-repair`." ) prompt = prompt or create_unstructured_prompt( allowed_nodes, allowed_relationships, self._relationship_type, additional_instructions, ) self.chain = prompt | llm else: # Define chain try: llm_type = llm._llm_type # type: ignore except AttributeError: llm_type = None schema = create_simple_model( allowed_nodes, allowed_relationships, node_properties, llm_type, relationship_properties, self._relationship_type, ) structured_llm = llm.with_structured_output(schema, include_raw=True) prompt = prompt or get_default_prompt(additional_instructions) self.chain = prompt | structured_llm
[docs] def process_response( self, document: Document, config: Optional[RunnableConfig] = None ) -> GraphDocument: """ Processes a single document, transforming it into a graph document using an LLM based on the model's schema and constraints. """ text = document.page_content raw_schema = self.chain.invoke({"input": text}, config=config) if self._function_call: raw_schema = cast(Dict[Any, Any], raw_schema) nodes, relationships = _convert_to_graph_document(raw_schema) else: nodes_set = set() relationships = [] if not isinstance(raw_schema, str): raw_schema = raw_schema.content parsed_json = self.json_repair.loads(raw_schema) if isinstance(parsed_json, dict): parsed_json = [parsed_json] for rel in parsed_json: # Check if mandatory properties are there if ( not isinstance(rel, dict) or not rel.get("head") or not rel.get("tail") or not rel.get("relation") ): continue # Nodes need to be deduplicated using a set # Use default Node label for nodes if missing nodes_set.add((rel["head"], rel.get("head_type", DEFAULT_NODE_TYPE))) nodes_set.add((rel["tail"], rel.get("tail_type", DEFAULT_NODE_TYPE))) source_node = Node( id=rel["head"], type=rel.get("head_type", DEFAULT_NODE_TYPE) ) target_node = Node( id=rel["tail"], type=rel.get("tail_type", DEFAULT_NODE_TYPE) ) relationships.append( Relationship( source=source_node, target=target_node, type=rel["relation"] ) ) # Create nodes list nodes = [Node(id=el[0], type=el[1]) for el in list(nodes_set)] # Strict mode filtering if self.strict_mode and (self.allowed_nodes or self.allowed_relationships): if self.allowed_nodes: lower_allowed_nodes = [el.lower() for el in self.allowed_nodes] nodes = [ node for node in nodes if node.type.lower() in lower_allowed_nodes ] relationships = [ rel for rel in relationships if rel.source.type.lower() in lower_allowed_nodes and rel.target.type.lower() in lower_allowed_nodes ] if self.allowed_relationships: # Filter by type and direction if self._relationship_type == "tuple": relationships = [ rel for rel in relationships if ( ( rel.source.type.lower(), rel.type.lower(), rel.target.type.lower(), ) in [ # type: ignore (s_t.lower(), r_t.lower(), t_t.lower()) for s_t, r_t, t_t in self.allowed_relationships ] ) ] else: # Filter by type only relationships = [ rel for rel in relationships if rel.type.lower() in [el.lower() for el in self.allowed_relationships] # type: ignore ] return GraphDocument(nodes=nodes, relationships=relationships, source=document)
[docs] def convert_to_graph_documents( self, documents: Sequence[Document], config: Optional[RunnableConfig] = None ) -> List[GraphDocument]: """Convert a sequence of documents into graph documents. Args: documents (Sequence[Document]): The original documents. kwargs: Additional keyword arguments. Returns: Sequence[GraphDocument]: The transformed documents as graphs. """ return [self.process_response(document, config) for document in documents]
[docs] async def aprocess_response( self, document: Document, config: Optional[RunnableConfig] = None ) -> GraphDocument: """ Asynchronously processes a single document, transforming it into a graph document. """ text = document.page_content raw_schema = await self.chain.ainvoke({"input": text}, config=config) if self._function_call: raw_schema = cast(Dict[Any, Any], raw_schema) nodes, relationships = _convert_to_graph_document(raw_schema) else: nodes_set = set() relationships = [] if not isinstance(raw_schema, str): raw_schema = raw_schema.content parsed_json = self.json_repair.loads(raw_schema) if isinstance(parsed_json, dict): parsed_json = [parsed_json] for rel in parsed_json: # Check if mandatory properties are there if ( not rel.get("head") or not rel.get("tail") or not rel.get("relation") ): continue # Nodes need to be deduplicated using a set # Use default Node label for nodes if missing nodes_set.add((rel["head"], rel.get("head_type", DEFAULT_NODE_TYPE))) nodes_set.add((rel["tail"], rel.get("tail_type", DEFAULT_NODE_TYPE))) source_node = Node( id=rel["head"], type=rel.get("head_type", DEFAULT_NODE_TYPE) ) target_node = Node( id=rel["tail"], type=rel.get("tail_type", DEFAULT_NODE_TYPE) ) relationships.append( Relationship( source=source_node, target=target_node, type=rel["relation"] ) ) # Create nodes list nodes = [Node(id=el[0], type=el[1]) for el in list(nodes_set)] if self.strict_mode and (self.allowed_nodes or self.allowed_relationships): if self.allowed_nodes: lower_allowed_nodes = [el.lower() for el in self.allowed_nodes] nodes = [ node for node in nodes if node.type.lower() in lower_allowed_nodes ] relationships = [ rel for rel in relationships if rel.source.type.lower() in lower_allowed_nodes and rel.target.type.lower() in lower_allowed_nodes ] if self.allowed_relationships: # Filter by type and direction if self._relationship_type == "tuple": relationships = [ rel for rel in relationships if ( ( rel.source.type.lower(), rel.type.lower(), rel.target.type.lower(), ) in [ # type: ignore (s_t.lower(), r_t.lower(), t_t.lower()) for s_t, r_t, t_t in self.allowed_relationships ] ) ] else: # Filter by type only relationships = [ rel for rel in relationships if rel.type.lower() in [el.lower() for el in self.allowed_relationships] # type: ignore ] return GraphDocument(nodes=nodes, relationships=relationships, source=document)
[docs] async def aconvert_to_graph_documents( self, documents: Sequence[Document], config: Optional[RunnableConfig] = None ) -> List[GraphDocument]: """ Asynchronously convert a sequence of documents into graph documents. """ tasks = [ asyncio.create_task(self.aprocess_response(document, config)) for document in documents ] results = await asyncio.gather(*tasks) return results