Source code for langchain_experimental.open_clip.open_clip
from typing import Any, Dict, List
from langchain_core.embeddings import Embeddings
from langchain_core.utils.pydantic import get_fields
from pydantic import BaseModel, ConfigDict, model_validator
[docs]
class OpenCLIPEmbeddings(BaseModel, Embeddings):
"""OpenCLIP Embeddings model."""
model: Any
preprocess: Any
tokenizer: Any
# Select model: https://github.com/mlfoundations/open_clip
model_name: str = "ViT-H-14"
checkpoint: str = "laion2b_s32b_b79k"
model_config = ConfigDict(protected_namespaces=())
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that open_clip and torch libraries are installed."""
try:
import open_clip
# Fall back to class defaults if not provided
model_name = values.get("model_name", get_fields(cls)["model_name"].default)
checkpoint = values.get("checkpoint", get_fields(cls)["checkpoint"].default)
# Load model
model, _, preprocess = open_clip.create_model_and_transforms(
model_name=model_name, pretrained=checkpoint
)
tokenizer = open_clip.get_tokenizer(model_name)
values["model"] = model
values["preprocess"] = preprocess
values["tokenizer"] = tokenizer
except ImportError:
raise ImportError(
"Please ensure both open_clip and torch libraries are installed. "
"pip install open_clip_torch torch"
)
return values
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
text_features = []
for text in texts:
# Tokenize the text
tokenized_text = self.tokenizer(text)
# Encode the text to get the embeddings
embeddings_tensor = self.model.encode_text(tokenized_text)
# Normalize the embeddings
norm = embeddings_tensor.norm(p=2, dim=1, keepdim=True)
normalized_embeddings_tensor = embeddings_tensor.div(norm)
# Convert normalized tensor to list and add to the text_features list
embeddings_list = normalized_embeddings_tensor.squeeze(0).tolist()
text_features.append(embeddings_list)
return text_features
[docs]
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
[docs]
def embed_image(self, uris: List[str]) -> List[List[float]]:
try:
from PIL import Image as _PILImage
except ImportError:
raise ImportError("Please install the PIL library: pip install pillow")
# Open images directly as PIL images
pil_images = [_PILImage.open(uri) for uri in uris]
image_features = []
for pil_image in pil_images:
# Preprocess the image for the model
preprocessed_image = self.preprocess(pil_image).unsqueeze(0)
# Encode the image to get the embeddings
embeddings_tensor = self.model.encode_image(preprocessed_image)
# Normalize the embeddings tensor
norm = embeddings_tensor.norm(p=2, dim=1, keepdim=True)
normalized_embeddings_tensor = embeddings_tensor.div(norm)
# Convert tensor to list and add to the image_features list
embeddings_list = normalized_embeddings_tensor.squeeze(0).tolist()
image_features.append(embeddings_list)
return image_features