Source code for langchain_experimental.plan_and_execute.executors.agent_executor
from typing import List
from langchain.agents.agent import AgentExecutor
from langchain.agents.structured_chat.base import StructuredChatAgent
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import BaseTool
from langchain_experimental.plan_and_execute.executors.base import ChainExecutor
HUMAN_MESSAGE_TEMPLATE = """Previous steps: {previous_steps}
Current objective: {current_step}
{agent_scratchpad}"""
TASK_PREFIX = """{objective}
"""
[docs]
def load_agent_executor(
llm: BaseLanguageModel,
tools: List[BaseTool],
verbose: bool = False,
include_task_in_prompt: bool = False,
) -> ChainExecutor:
"""
Load an agent executor.
Args:
llm: BaseLanguageModel
tools: List[BaseTool]
verbose: bool. Defaults to False.
include_task_in_prompt: bool. Defaults to False.
Returns:
ChainExecutor
"""
input_variables = ["previous_steps", "current_step", "agent_scratchpad"]
template = HUMAN_MESSAGE_TEMPLATE
if include_task_in_prompt:
input_variables.append("objective")
template = TASK_PREFIX + template
agent = StructuredChatAgent.from_llm_and_tools(
llm,
tools,
human_message_template=template,
input_variables=input_variables,
)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=verbose
)
return ChainExecutor(chain=agent_executor)