Source code for langchain_experimental.video_captioning.services.image_service
from typing import List, Optional
import numpy as np
from langchain_community.document_loaders import ImageCaptionLoader
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_experimental.video_captioning.models import VideoModel
[docs]
class ImageProcessor:
_SAMPLES_PER_SECOND: int = 4
[docs]
def __init__(self, frame_skip: int = -1, threshold: int = 3000000) -> None:
self.threshold = threshold
self.frame_skip = frame_skip
[docs]
def process(
self,
video_file_path: str,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> list:
return self._extract_frames(video_file_path)
def _extract_frames(self, video_file_path: str) -> list:
try:
import cv2
from cv2.typing import MatLike
except ImportError as e:
raise ImportError(
"Unable to import cv2, please install it with "
"`pip install -U opencv-python`"
) from e
video_models: List[VideoModel] = []
def _add_model(start_time: int, end_time: int) -> None:
middle_frame_time = start_time / end_time
cap.set(cv2.CAP_PROP_POS_MSEC, middle_frame_time)
# Convert the frame to bytes
_, encoded_frame = cv2.imencode(".jpg", frame)
notable_frame_bytes = encoded_frame.tobytes()
cap.set(cv2.CAP_PROP_POS_MSEC, end_time)
# Create an instance of the ImageCaptionLoader
loader = ImageCaptionLoader(images=notable_frame_bytes)
# Load captions for the images
list_docs = loader.load()
video_model = VideoModel(
start_time,
end_time,
list_docs[len(list_docs) - 1].page_content.replace("[SEP]", "").strip(),
)
video_models.append(video_model)
def _is_notable_frame(frame1: MatLike, frame2: MatLike, threshold: int) -> bool:
# Convert frames to grayscale
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# Compute absolute difference between frames
frame_diff = cv2.absdiff(gray1, gray2)
# Apply threshold to identify notable differences
_, thresholded_diff = cv2.threshold(frame_diff, 30, 255, cv2.THRESH_BINARY)
# Count the number of white pixels (indicating differences)
num_diff_pixels = np.sum(thresholded_diff)
return num_diff_pixels > threshold
# Open the video file
cap = cv2.VideoCapture(video_file_path)
if self.frame_skip == -1:
self.frame_skip = int(cap.get(cv2.CAP_PROP_FPS)) // self._SAMPLES_PER_SECOND
# Read the first frame
ret, prev_frame = cap.read()
# Loop through the video frames
start_time = 0
end_time = 0
while True:
# Read the next frame
ret, frame = cap.read()
if not ret:
break # Break the loop if there are no more frames
# Check if the current frame is notable
if _is_notable_frame(prev_frame, frame, self.threshold):
end_time = int(cap.get(cv2.CAP_PROP_POS_MSEC))
_add_model(start_time, end_time)
start_time = end_time
# Update the previous frame
prev_frame = frame.copy()
# Increment the frame position by the skip value
cap.set(
cv2.CAP_PROP_POS_FRAMES,
cap.get(cv2.CAP_PROP_POS_FRAMES) + self.frame_skip,
)
# Release the video capture object
cap.release()
return video_models