Source code for langchain_google_community.vertex_ai_search

"""Retriever wrapper for Google Vertex AI Search.

Set the following environment variables before the tests:
export PROJECT_ID=... - set to your Google Cloud project ID
export DATA_STORE_ID=... - the ID of the search engine to use for the test
"""
from __future__ import annotations

import json
import warnings
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence

from google.api_core.client_options import ClientOptions
from google.api_core.exceptions import InvalidArgument
from google.protobuf.json_format import MessageToDict
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.load import Serializable, load
from langchain_core.retrievers import BaseRetriever
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from pydantic import ConfigDict, Field, PrivateAttr, model_validator

from langchain_google_community._utils import get_client_info

if TYPE_CHECKING:
    from google.cloud.discoveryengine_v1beta import (  # type: ignore[import, attr-defined]
        ConversationalSearchServiceClient,
        SearchRequest,
        SearchResult,
        SearchServiceClient,
    )


def _load(dump: Dict[str, Any]) -> Any:
    return load(dump, valid_namespaces=["langchain_google_community"])


class _BaseVertexAISearchRetriever(Serializable):
    project_id: str
    """Google Cloud Project ID."""
    data_store_id: str
    """Vertex AI Search data store ID."""
    location_id: str = "global"
    """Vertex AI Search data store location."""
    serving_config_id: str = "default_config"
    """Vertex AI Search serving config ID."""
    credentials: Any = None
    """The default custom credentials (google.auth.credentials.Credentials) to use
    when making API calls. If not provided, credentials will be ascertained from
    the environment."""
    engine_data_type: int = Field(default=0, ge=0, le=2)
    """ Defines the Vertex AI Search data type
    0 - Unstructured data 
    1 - Structured data
    2 - Website data
    """

    @classmethod
    def is_lc_serializable(self) -> bool:
        return True

    def __reduce__(self) -> Any:
        return _load, (self.to_json(),)

    @model_validator(mode="before")
    @classmethod
    def validate_environment(cls, values: Dict) -> Any:
        """Validates the environment."""
        try:
            from google.cloud import discoveryengine_v1beta  # noqa: F401
        except ImportError as exc:
            raise ImportError(
                "Could not import google-cloud-discoveryengine python package. "
                "Please, install vertexaisearch dependency group: "
                "poetry install --with vertexaisearch"
            ) from exc

        values["project_id"] = get_from_dict_or_env(values, "project_id", "PROJECT_ID")

        try:
            # For backwards compatibility
            search_engine_id = get_from_dict_or_env(
                values, "search_engine_id", "SEARCH_ENGINE_ID"
            )

            if search_engine_id:
                warnings.warn(
                    "The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.",  # noqa: E501
                    DeprecationWarning,
                )
                values["data_store_id"] = search_engine_id
        except:  # noqa: E722
            pass

        values["data_store_id"] = get_from_dict_or_env(
            values, "data_store_id", "DATA_STORE_ID"
        )

        return values

    @property
    def client_options(self) -> "ClientOptions":
        return ClientOptions(
            api_endpoint=(
                f"{self.location_id}-discoveryengine.googleapis.com"
                if self.location_id != "global"
                else None
            )
        )

    def _convert_structured_search_response(
        self, results: Sequence[SearchResult]
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )

            documents.append(
                Document(
                    page_content=json.dumps(document_dict.get("struct_data", {})),
                    metadata={"id": document_dict["id"], "name": document_dict["name"]},
                )
            )

        return documents

    def _convert_unstructured_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data", {})

            if not derived_struct_data or chunk_type not in derived_struct_data:
                continue

            doc_metadata = {
                "id": document_dict["id"],
                "source": derived_struct_data.get("link", ""),
                **document_dict.get("struct_data", {}),
            }

            for chunk in derived_struct_data[chunk_type]:
                chunk_metadata = doc_metadata.copy()

                if chunk_type in ("extractive_answers", "extractive_segments"):
                    chunk_metadata["source"] += f"{chunk.get('pageNumber', '')}"

                    if chunk_type == "extractive_segments":
                        chunk_metadata.update(
                            {
                                "previous_segments": chunk.get("previous_segments", []),
                                "next_segments": chunk.get("next_segments", []),
                            }
                        )
                        if "relevanceScore" in chunk:
                            chunk_metadata["relevance_score"] = chunk.get(
                                "relevanceScore"
                            )

                documents.append(
                    Document(
                        page_content=chunk.get("content", ""), metadata=chunk_metadata
                    )
                )

        return documents

    def _convert_website_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data")
            if not derived_struct_data:
                continue

            doc_metadata = document_dict.get("struct_data", {})
            doc_metadata["id"] = document_dict["id"]
            doc_metadata["source"] = derived_struct_data.get("link", "")

            if chunk_type not in derived_struct_data:
                continue

            text_field = "snippet" if chunk_type == "snippets" else "content"

            for chunk in derived_struct_data[chunk_type]:
                documents.append(
                    Document(
                        page_content=chunk.get(text_field, ""), metadata=doc_metadata
                    )
                )

        if not documents:
            print(f"No {chunk_type} could be found.")  # noqa: T201
            if chunk_type == "extractive_answers":
                print(  # noqa: T201
                    "Make sure that your data store is using Advanced Website "
                    "Indexing.\n"
                    "https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#advanced-website-indexing"  # noqa: E501
                )

        return documents


[docs] class VertexAISearchRetriever(BaseRetriever, _BaseVertexAISearchRetriever): """`Google Vertex AI Search` retriever. For a detailed explanation of the Vertex AI Search concepts and configuration parameters, refer to the product documentation. https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction """ filter: Optional[str] = None """Filter expression.""" order_by: Optional[str] = None """Comma-separated list of fields to order by.""" canonical_filter: Optional[str] = None """Canonical filter expression.""" get_extractive_answers: bool = False """If True return Extractive Answers, otherwise return Extractive Segments or Snippets.""" # noqa: E501 max_documents: int = Field(default=5, ge=1, le=100) """The maximum number of documents to return.""" max_extractive_answer_count: int = Field(default=1, ge=1, le=5) """The maximum number of extractive answers to return per search result. """ max_extractive_segment_count: int = Field(default=1, ge=1, le=10) """The maximum number of extractive segments to return per search result. """ return_extractive_segment_score: bool = False """If set to True, the relevance score for each extractive segment will be included in the search results. This can be useful for ranking or filtering segments. """ num_previous_segments: int = Field(default=1, ge=1, le=3) """Specifies the number of text segments preceding the matched segment to return. This provides context before the relevant text. Value must be between 1 and 3. """ num_next_segments: int = Field(default=1, ge=1, le=3) """Specifies the number of text segments following the matched segment to return. This provides context after the relevant text. Value must be between 1 and 3. """ query_expansion_condition: int = Field(default=1, ge=0, le=2) """Specification to determine under which conditions query expansion should occur. 0 - Unspecified query expansion condition. In this case, server behavior defaults to disabled 1 - Disabled query expansion. Only the exact search query is used, even if SearchResponse.total_size is zero. 2 - Automatic query expansion built by the Search API. """ spell_correction_mode: int = Field(default=2, ge=0, le=2) """Specification to determine under which conditions query expansion should occur. 0 - Unspecified spell correction mode. In this case, server behavior defaults to auto. 1 - Suggestion only. Search API will try to find a spell suggestion if there is any and put in the `SearchResponse.corrected_query`. The spell suggestion will not be used as the search query. 2 - Automatic spell correction built by the Search API. Search will be based on the corrected query if found. """ boost_spec: Optional[Dict[Any, Any]] = None """BoostSpec for boosting search results. A protobuf should be provided. https://cloud.google.com/generative-ai-app-builder/docs/boost-search-results https://cloud.google.com/generative-ai-app-builder/docs/reference/rest/v1beta/BoostSpec """ custom_embedding: Optional[Embeddings] = None """Custom embedding model for the retriever. (Bring your own embedding) It needs to match the embedding model that was used to embed docs in the datastore. It needs to be a langchain embedding VertexAIEmbeddings(project="{PROJECT}") If you provide an embedding model, you also need to provide a ranking_expression and a custom_embedding_field_path. https://cloud.google.com/generative-ai-app-builder/docs/bring-embeddings """ custom_embedding_field_path: Optional[str] = None """ The field path for the custom embedding used in the Vertex AI datastore schema. """ custom_embedding_ratio: Optional[float] = 0.0 """Controls the ranking of results. Value should be between 0 and 1. It will generate the ranking_expression in the following manner: "{custom_embedding_ratio} * dotProduct({custom_embedding_field_path}) + {1 - custom_embedding_ratio} * relevance_score" """ _client: SearchServiceClient = PrivateAttr() _serving_config: str = PrivateAttr() model_config = ConfigDict( extra="forbid", arbitrary_types_allowed=True, ) def __init__(self, **kwargs: Any) -> None: """Initializes private fields.""" try: from google.cloud.discoveryengine_v1beta import SearchServiceClient except ImportError as exc: raise ImportError( "Could not import google-cloud-discoveryengine python package. " "Please, install vertexaisearch dependency group: " "`pip install langchain-google-community[vertexaisearch]`" ) from exc try: super().__init__(**kwargs) except ValueError as e: print(f"Error initializing GoogleVertexAISearchRetriever: {str(e)}") raise # For more information, refer to: # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store self._client = SearchServiceClient( credentials=self.credentials, client_options=self.client_options, client_info=get_client_info(module="vertex-ai-search"), ) self._serving_config = self._client.serving_config_path( project=self.project_id, location=self.location_id, data_store=self.data_store_id, serving_config=self.serving_config_id, ) def _get_content_spec_kwargs(self) -> Optional[Dict[str, Any]]: """Prepares a ContentSpec object.""" from google.cloud.discoveryengine_v1beta import SearchRequest if self.engine_data_type == 0: if self.get_extractive_answers: extractive_content_spec = ( SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_answer_count=self.max_extractive_answer_count, ) ) else: extractive_content_spec = ( SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_segment_count=self.max_extractive_segment_count, num_previous_segments=self.num_previous_segments, num_next_segments=self.num_next_segments, return_extractive_segment_score=( self.return_extractive_segment_score ), ) ) content_search_spec = dict(extractive_content_spec=extractive_content_spec) elif self.engine_data_type == 1: content_search_spec = None elif self.engine_data_type == 2: content_search_spec = dict( extractive_content_spec=SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_answer_count=self.max_extractive_answer_count, ), snippet_spec=SearchRequest.ContentSearchSpec.SnippetSpec( return_snippet=True ), ) else: raise NotImplementedError( "Only data store type 0 (Unstructured), 1 (Structured)," "or 2 (Website) are supported currently." + f" Got {self.engine_data_type}" ) return content_search_spec def _create_search_request(self, query: str) -> SearchRequest: """Prepares a SearchRequest object.""" from google.cloud.discoveryengine_v1beta import SearchRequest query_expansion_spec = SearchRequest.QueryExpansionSpec( condition=self.query_expansion_condition, ) spell_correction_spec = SearchRequest.SpellCorrectionSpec( mode=self.spell_correction_mode ) content_search_spec_kwargs = self._get_content_spec_kwargs() if content_search_spec_kwargs is not None: content_search_spec = SearchRequest.ContentSearchSpec( **content_search_spec_kwargs ) else: content_search_spec = None if ( self.custom_embedding is not None or self.custom_embedding_field_path is not None ): if self.custom_embedding is None: raise ValueError( "Please provide a custom embedding model if you provide a " "custom_embedding_field_path." ) if self.custom_embedding_field_path is None: raise ValueError( "Please provide a custom_embedding_field_path if you provide a " "custom embedding model." ) if self.custom_embedding_ratio is None: raise ValueError( "Please provide a custom_embedding_ratio if you provide a " "custom embedding model or a custom_embedding_field_path." ) if not 0 <= self.custom_embedding_ratio <= 1: raise ValueError( "Custom embedding ratio must be between 0 and 1 " f"when using custom embeddings. Got {self.custom_embedding_ratio}" ) embedding_vector = SearchRequest.EmbeddingSpec.EmbeddingVector( field_path=self.custom_embedding_field_path, vector=self.custom_embedding.embed_query(query), ) embedding_spec = SearchRequest.EmbeddingSpec( embedding_vectors=[embedding_vector] ) ranking_expression = ( f"{self.custom_embedding_ratio} * " f"dotProduct({self.custom_embedding_field_path}) + " f"{1 - self.custom_embedding_ratio} * relevance_score" ) else: embedding_spec = None ranking_expression = None return SearchRequest( query=query, filter=self.filter, order_by=self.order_by, canonical_filter=self.canonical_filter, serving_config=self._serving_config, page_size=self.max_documents, content_search_spec=content_search_spec, query_expansion_spec=query_expansion_spec, spell_correction_spec=spell_correction_spec, boost_spec=SearchRequest.BoostSpec(**self.boost_spec) if self.boost_spec else None, embedding_spec=embedding_spec, ranking_expression=ranking_expression, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" search_request = self._create_search_request(query) try: response = self._client.search(search_request) except InvalidArgument as exc: raise type(exc)( exc.message + " This might be due to engine_data_type not set correctly." ) if self.engine_data_type == 0: chunk_type = ( "extractive_answers" if self.get_extractive_answers else "extractive_segments" ) documents = self._convert_unstructured_search_response( response.results, chunk_type ) elif self.engine_data_type == 1: documents = self._convert_structured_search_response(response.results) elif self.engine_data_type == 2: chunk_type = ( "extractive_answers" if self.get_extractive_answers else "snippets" ) documents = self._convert_website_search_response( response.results, chunk_type ) else: raise NotImplementedError( "Only data store type 0 (Unstructured), 1 (Structured)," "or 2 (Website) are supported currently." + f" Got {self.engine_data_type}" ) return documents
[docs] class VertexAIMultiTurnSearchRetriever(BaseRetriever, _BaseVertexAISearchRetriever): """`Google Vertex AI Search` retriever for multi-turn conversations.""" conversation_id: str = "-" """Vertex AI Search Conversation ID.""" _client: ConversationalSearchServiceClient = PrivateAttr() _serving_config: str = PrivateAttr() model_config = ConfigDict( extra="ignore", arbitrary_types_allowed=True, ) def __init__(self, **kwargs: Any): super().__init__(**kwargs) from google.cloud.discoveryengine_v1beta import ( ConversationalSearchServiceClient, ) self._client = ConversationalSearchServiceClient( credentials=self.credentials, client_options=self.client_options, client_info=get_client_info(module="vertex-ai-search"), ) self._serving_config = self._client.serving_config_path( project=self.project_id, location=self.location_id, data_store=self.data_store_id, serving_config=self.serving_config_id, ) if self.engine_data_type == 1: raise NotImplementedError( "Data store type 1 (Structured)" "is not currently supported for multi-turn search." + f" Got {self.engine_data_type}" ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" from google.cloud.discoveryengine_v1beta import ( ConverseConversationRequest, TextInput, ) request = ConverseConversationRequest( name=self._client.conversation_path( self.project_id, self.location_id, self.data_store_id, self.conversation_id, ), serving_config=self._serving_config, query=TextInput(input=query), ) response = self._client.converse_conversation(request) if self.engine_data_type == 2: return self._convert_website_search_response( response.search_results, "extractive_answers" ) return self._convert_unstructured_search_response( response.search_results, "extractive_answers" )
[docs] class VertexAISearchSummaryTool(BaseTool, VertexAISearchRetriever): """Class that exposes a tool to interface with an App in Vertex Search and Conversation and get the summary of the documents retrieved. """ summary_prompt: Optional[str] = None """Prompt for the summarization agent""" summary_result_count: int = 3 """ Number of documents to include in the summary""" summary_include_citations: bool = True """ Whether to include citations in the summary """ summary_spec_kwargs: Dict[str, Any] = Field(default_factory=dict) """ Additional kwargs for `SearchRequest.ContentSearchSpec.SummarySpec`""" model_config = ConfigDict( extra="forbid", arbitrary_types_allowed=True, ) def _get_content_spec_kwargs(self) -> Optional[Dict[str, Any]]: """Adds additional summary_spec parameters to the configuration of the search. Returns: kwargs for the specification of the content. """ from google.cloud.discoveryengine_v1beta import SearchRequest kwargs = super()._get_content_spec_kwargs() or {} kwargs["summary_spec"] = SearchRequest.ContentSearchSpec.SummarySpec( summary_result_count=self.summary_result_count, include_citations=self.summary_include_citations, model_prompt_spec=SearchRequest.ContentSearchSpec.SummarySpec.ModelPromptSpec( preamble=self.summary_prompt ), **self.summary_spec_kwargs, ) return kwargs def _run(self, user_query: str) -> str: """Runs the tool. Args: search_query: The query to run by the agent. Returns: The response from the agent. """ request = self._create_search_request(user_query) response = self._client.search(request) return response.summary.summary_text