Source code for langchain_neo4j.chains.graph_qa.cypher
"""Question answering over a graph."""from__future__importannotationsfromtypingimportAny,Dict,List,Optional,Unionfromlangchain.chains.baseimportChainfromlangchain_core.callbacksimportCallbackManagerForChainRunfromlangchain_core.language_modelsimportBaseLanguageModelfromlangchain_core.messagesimport(AIMessage,BaseMessage,SystemMessage,ToolMessage,)fromlangchain_core.output_parsersimportStrOutputParserfromlangchain_core.promptsimport(BasePromptTemplate,ChatPromptTemplate,HumanMessagePromptTemplate,MessagesPlaceholder,)fromlangchain_core.runnablesimportRunnablefromneo4j_graphrag.retrievers.text2cypherimportextract_cypherfromneo4j_graphrag.schemaimportformat_schemafrompydanticimportFieldfromlangchain_neo4j.chains.graph_qa.cypher_utilsimport(CypherQueryCorrector,Schema,)fromlangchain_neo4j.chains.graph_qa.promptsimport(CYPHER_GENERATION_PROMPT,CYPHER_QA_PROMPT,)fromlangchain_neo4j.graphs.graph_storeimportGraphStoreINTERMEDIATE_STEPS_KEY="intermediate_steps"FUNCTION_RESPONSE_SYSTEM="""You are an assistant that helps to form nice and human understandable answers based on the provided information from tools.Do not add any other information that wasn't present in the tools, and use very concise style in interpreting results!"""
[docs]defconstruct_schema(structured_schema:Dict[str,Any],include_types:List[str],exclude_types:List[str],is_enhanced:bool,)->str:"""Filter the schema based on included or excluded types"""deffilter_func(x:str)->bool:returnxininclude_typesifinclude_typeselsexnotinexclude_typesfiltered_schema:Dict[str,Any]={"node_props":{k:vfork,vinstructured_schema.get("node_props",{}).items()iffilter_func(k)},"rel_props":{k:vfork,vinstructured_schema.get("rel_props",{}).items()iffilter_func(k)},"relationships":[rforrinstructured_schema.get("relationships",[])ifall(filter_func(r[t])fortin["start","end","type"])],}returnformat_schema(filtered_schema,is_enhanced)
[docs]classGraphCypherQAChain(Chain):"""Chain for question-answering against a graph by generating Cypher statements. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """graph:GraphStore=Field(exclude=True)cypher_generation_chain:Runnable[Dict[str,Any],str]qa_chain:Runnable[Dict[str,Any],str]graph_schema:strinput_key:str="query"#: :meta private:output_key:str="result"#: :meta private:top_k:int=10"""Number of results to return from the query"""return_intermediate_steps:bool=False"""Whether or not to return the intermediate steps along with the final answer."""return_direct:bool=False"""Whether or not to return the result of querying the graph directly."""cypher_query_corrector:Optional[CypherQueryCorrector]=None"""Optional cypher validation tool"""use_function_response:bool=False"""Whether to wrap the database context as tool/function response"""allow_dangerous_requests:bool=False"""Forced user opt-in to acknowledge that the chain can make dangerous requests. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """def__init__(self,**kwargs:Any)->None:"""Initialize the chain."""super().__init__(**kwargs)ifself.allow_dangerous_requestsisnotTrue:raiseValueError("In order to use this chain, you must acknowledge that it can make ""dangerous requests by setting `allow_dangerous_requests` to `True`.""You must narrowly scope the permissions of the database connection ""to only include necessary permissions. Failure to do so may result ""in data corruption or loss or reading sensitive data if such data is ""present in the database.""Only use this chain if you understand the risks and have taken the ""necessary precautions. ""See https://python.langchain.com/docs/security for more information.")@propertydefinput_keys(self)->List[str]:"""Return the input keys. :meta private: """return[self.input_key]@propertydefoutput_keys(self)->List[str]:"""Return the output keys. :meta private: """_output_keys=[self.output_key]return_output_keys@propertydef_chain_type(self)->str:return"graph_cypher_chain"
[docs]@classmethoddeffrom_llm(cls,llm:Optional[BaseLanguageModel]=None,*,qa_prompt:Optional[BasePromptTemplate]=None,cypher_prompt:Optional[BasePromptTemplate]=None,cypher_llm:Optional[BaseLanguageModel]=None,qa_llm:Optional[BaseLanguageModel]=None,exclude_types:List[str]=[],include_types:List[str]=[],validate_cypher:bool=False,qa_llm_kwargs:Optional[Dict[str,Any]]=None,cypher_llm_kwargs:Optional[Dict[str,Any]]=None,use_function_response:bool=False,function_response_system:str=FUNCTION_RESPONSE_SYSTEM,**kwargs:Any,)->GraphCypherQAChain:"""Initialize from LLM."""# Ensure at least one LLM is providedifllmisNoneandqa_llmisNoneandcypher_llmisNone:raiseValueError("At least one LLM must be provided")# Prevent all three LLMs from being provided simultaneouslyifllmisnotNoneandqa_llmisnotNoneandcypher_llmisnotNone:raiseValueError("You can specify up to two of 'cypher_llm', 'qa_llm'"", and 'llm', but not all three simultaneously.")# Assign default LLMs if specific ones are not providedifllmisnotNone:qa_llm=qa_llmorllmcypher_llm=cypher_llmorllmelse:# If llm is None, both qa_llm and cypher_llm must be providedifqa_llmisNoneorcypher_llmisNone:raiseValueError("If `llm` is not provided, both `qa_llm` and `cypher_llm` must be ""provided.")ifcypher_prompt:ifcypher_llm_kwargs:raiseValueError("Specifying cypher_prompt and cypher_llm_kwargs together is"" not allowed. Please pass prompt via cypher_llm_kwargs.")else:ifcypher_llm_kwargs:cypher_prompt=cypher_llm_kwargs.pop("prompt",CYPHER_GENERATION_PROMPT)ifnotisinstance(cypher_prompt,BasePromptTemplate):raiseValueError("The cypher_llm_kwargs `prompt` must inherit from ""BasePromptTemplate")else:cypher_prompt=CYPHER_GENERATION_PROMPTifqa_prompt:ifqa_llm_kwargs:raiseValueError("Specifying qa_prompt and qa_llm_kwargs together is"" not allowed. Please pass prompt via qa_llm_kwargs.")else:ifqa_llm_kwargs:qa_prompt=qa_llm_kwargs.pop("prompt",CYPHER_QA_PROMPT)ifnotisinstance(qa_prompt,BasePromptTemplate):raiseValueError("The qa_llm_kwargs `prompt` must inherit from ""BasePromptTemplate")else:qa_prompt=CYPHER_QA_PROMPTuse_qa_llm_kwargs=qa_llm_kwargsifqa_llm_kwargsisnotNoneelse{}use_cypher_llm_kwargs=(cypher_llm_kwargsifcypher_llm_kwargsisnotNoneelse{})ifuse_function_response:try:ifhasattr(qa_llm,"bind_tools"):qa_llm.bind_tools({})else:raiseAttributeErrorresponse_prompt=ChatPromptTemplate.from_messages([SystemMessage(content=function_response_system),HumanMessagePromptTemplate.from_template("{question}"),MessagesPlaceholder(variable_name="function_response"),])qa_chain=response_prompt|qa_llm|StrOutputParser()except(NotImplementedError,AttributeError):raiseValueError("Provided LLM does not support native tools/functions")else:qa_chain=qa_prompt|qa_llm.bind(**use_qa_llm_kwargs)|StrOutputParser()cypher_generation_chain=(cypher_prompt|cypher_llm.bind(**use_cypher_llm_kwargs)|StrOutputParser())ifexclude_typesandinclude_types:raiseValueError("Either `exclude_types` or `include_types` ""can be provided, but not both")graph=kwargs["graph"]graph_schema=construct_schema(graph.get_structured_schema,include_types,exclude_types,graph._enhanced_schema,)cypher_query_corrector=Noneifvalidate_cypher:corrector_schema=[Schema(el["start"],el["type"],el["end"])forelingraph.get_structured_schema.get("relationships",[])]cypher_query_corrector=CypherQueryCorrector(corrector_schema)returncls(graph_schema=graph_schema,qa_chain=qa_chain,cypher_generation_chain=cypher_generation_chain,cypher_query_corrector=cypher_query_corrector,use_function_response=use_function_response,**kwargs,)
def_call(self,inputs:Dict[str,Any],run_manager:Optional[CallbackManagerForChainRun]=None,)->Dict[str,Any]:"""Generate Cypher statement, use it to look up in db and answer question."""_run_manager=run_managerorCallbackManagerForChainRun.get_noop_manager()callbacks=_run_manager.get_child()question=inputs[self.input_key]args={"question":question,"schema":self.graph_schema,}args.update(inputs)intermediate_steps:List=[]generated_cypher=self.cypher_generation_chain.invoke(args,callbacks=callbacks)# Extract Cypher code if it is wrapped in backticksgenerated_cypher=extract_cypher(generated_cypher)# Correct Cypher query if enabledifself.cypher_query_corrector:generated_cypher=self.cypher_query_corrector(generated_cypher)_run_manager.on_text("Generated Cypher:",end="\n",verbose=self.verbose)_run_manager.on_text(generated_cypher,color="green",end="\n",verbose=self.verbose)intermediate_steps.append({"query":generated_cypher})# Retrieve and limit the number of results# Generated Cypher be null if query corrector identifies invalid schemaifgenerated_cypher:context=self.graph.query(generated_cypher)[:self.top_k]else:context=[]final_result:Union[List[Dict[str,Any]],str]ifself.return_direct:final_result=contextelse:_run_manager.on_text("Full Context:",end="\n",verbose=self.verbose)_run_manager.on_text(str(context),color="green",end="\n",verbose=self.verbose)intermediate_steps.append({"context":context})ifself.use_function_response:function_response=get_function_response(question,context)final_result=self.qa_chain.invoke({"question":question,"function_response":function_response},)else:final_result=self.qa_chain.invoke({"question":question,"context":context},callbacks=callbacks,)chain_result:Dict[str,Any]={self.output_key:final_result}ifself.return_intermediate_steps:chain_result[INTERMEDIATE_STEPS_KEY]=intermediate_stepsreturnchain_result