"""Ollama large language models."""
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Literal,
Mapping,
Optional,
Union,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLLM, LangSmithParams
from langchain_core.outputs import GenerationChunk, LLMResult
from ollama import AsyncClient, Client, Options
from pydantic import PrivateAttr, model_validator
from typing_extensions import Self
[docs]
class OllamaLLM(BaseLLM):
"""OllamaLLM large language models.
Example:
.. code-block:: python
from langchain_ollama import OllamaLLM
model = OllamaLLM(model="llama3")
model.invoke("Come up with 10 names for a song about parrots")
"""
model: str
"""Model name to use."""
mirostat: Optional[int] = None
"""Enable Mirostat sampling for controlling perplexity.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"""
mirostat_eta: Optional[float] = None
"""Influences how quickly the algorithm responds to feedback
from the generated text. A lower learning rate will result in
slower adjustments, while a higher learning rate will make
the algorithm more responsive. (Default: 0.1)"""
mirostat_tau: Optional[float] = None
"""Controls the balance between coherence and diversity
of the output. A lower value will result in more focused and
coherent text. (Default: 5.0)"""
num_ctx: Optional[int] = None
"""Sets the size of the context window used to generate the
next token. (Default: 2048) """
num_gpu: Optional[int] = None
"""The number of GPUs to use. On macOS it defaults to 1 to
enable metal support, 0 to disable."""
num_thread: Optional[int] = None
"""Sets the number of threads to use during computation.
By default, Ollama will detect this for optimal performance.
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores)."""
num_predict: Optional[int] = None
"""Maximum number of tokens to predict when generating text.
(Default: 128, -1 = infinite generation, -2 = fill context)"""
repeat_last_n: Optional[int] = None
"""Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)"""
repeat_penalty: Optional[float] = None
"""Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
will be more lenient. (Default: 1.1)"""
temperature: Optional[float] = None
"""The temperature of the model. Increasing the temperature will
make the model answer more creatively. (Default: 0.8)"""
stop: Optional[List[str]] = None
"""Sets the stop tokens to use."""
tfs_z: Optional[float] = None
"""Tail free sampling is used to reduce the impact of less probable
tokens from the output. A higher value (e.g., 2.0) will reduce the
impact more, while a value of 1.0 disables this setting. (default: 1)"""
top_k: Optional[int] = None
"""Reduces the probability of generating nonsense. A higher value (e.g. 100)
will give more diverse answers, while a lower value (e.g. 10)
will be more conservative. (Default: 40)"""
top_p: Optional[float] = None
"""Works together with top-k. A higher value (e.g., 0.95) will lead
to more diverse text, while a lower value (e.g., 0.5) will
generate more focused and conservative text. (Default: 0.9)"""
format: Literal["", "json"] = ""
"""Specify the format of the output (options: json)"""
keep_alive: Optional[Union[int, str]] = None
"""How long the model will stay loaded into memory."""
base_url: Optional[str] = None
"""Base url the model is hosted under."""
client_kwargs: Optional[dict] = {}
"""Additional kwargs to pass to the httpx Client.
For a full list of the params, see [this link](https://pydoc.dev/httpx/latest/httpx.Client.html)
"""
_client: Client = PrivateAttr(default=None)
"""
The client to use for making requests.
"""
_async_client: AsyncClient = PrivateAttr(default=None)
"""
The async client to use for making requests.
"""
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Ollama."""
return {
"model": self.model,
"format": self.format,
"options": {
"mirostat": self.mirostat,
"mirostat_eta": self.mirostat_eta,
"mirostat_tau": self.mirostat_tau,
"num_ctx": self.num_ctx,
"num_gpu": self.num_gpu,
"num_thread": self.num_thread,
"num_predict": self.num_predict,
"repeat_last_n": self.repeat_last_n,
"repeat_penalty": self.repeat_penalty,
"temperature": self.temperature,
"stop": self.stop,
"tfs_z": self.tfs_z,
"top_k": self.top_k,
"top_p": self.top_p,
},
"keep_alive": self.keep_alive,
}
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "ollama-llm"
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get standard params for tracing."""
params = super()._get_ls_params(stop=stop, **kwargs)
if max_tokens := kwargs.get("num_predict", self.num_predict):
params["ls_max_tokens"] = max_tokens
return params
@model_validator(mode="after")
def _set_clients(self) -> Self:
"""Set clients to use for ollama."""
client_kwargs = self.client_kwargs or {}
self._client = Client(host=self.base_url, **client_kwargs)
self._async_client = AsyncClient(host=self.base_url, **client_kwargs)
return self
async def _acreate_generate_stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> AsyncIterator[Union[Mapping[str, Any], str]]:
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
stop = self.stop
params = self._default_params
for key in self._default_params:
if key in kwargs:
params[key] = kwargs[key]
params["options"]["stop"] = stop
async for part in await self._async_client.generate(
model=params["model"],
prompt=prompt,
stream=True,
options=Options(**params["options"]),
keep_alive=params["keep_alive"],
format=params["format"],
): # type: ignore
yield part
def _create_generate_stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[Union[Mapping[str, Any], str]]:
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
stop = self.stop
params = self._default_params
for key in self._default_params:
if key in kwargs:
params[key] = kwargs[key]
params["options"]["stop"] = stop
yield from self._client.generate(
model=params["model"],
prompt=prompt,
stream=True,
options=Options(**params["options"]),
keep_alive=params["keep_alive"],
format=params["format"],
)
async def _astream_with_aggregation(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> GenerationChunk:
final_chunk = None
async for stream_resp in self._acreate_generate_stream(prompt, stop, **kwargs):
if not isinstance(stream_resp, str):
chunk = GenerationChunk(
text=stream_resp["response"] if "response" in stream_resp else "",
generation_info=(
dict(stream_resp) if stream_resp.get("done") is True else None
),
)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
def _stream_with_aggregation(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> GenerationChunk:
final_chunk = None
for stream_resp in self._create_generate_stream(prompt, stop, **kwargs):
if not isinstance(stream_resp, str):
chunk = GenerationChunk(
text=stream_resp["response"] if "response" in stream_resp else "",
generation_info=(
dict(stream_resp) if stream_resp.get("done") is True else None
),
)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
for prompt in prompts:
final_chunk = self._stream_with_aggregation(
prompt,
stop=stop,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
generations.append([final_chunk])
return LLMResult(generations=generations) # type: ignore[arg-type]
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
for prompt in prompts:
final_chunk = await self._astream_with_aggregation(
prompt,
stop=stop,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
generations.append([final_chunk])
return LLMResult(generations=generations) # type: ignore[arg-type]
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
for stream_resp in self._create_generate_stream(prompt, stop, **kwargs):
if not isinstance(stream_resp, str):
chunk = GenerationChunk(
text=(stream_resp.get("response", "")),
generation_info=(
dict(stream_resp) if stream_resp.get("done") is True else None
),
)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
verbose=self.verbose,
)
yield chunk
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
async for stream_resp in self._acreate_generate_stream(prompt, stop, **kwargs):
if not isinstance(stream_resp, str):
chunk = GenerationChunk(
text=(stream_resp.get("response", "")),
generation_info=(
dict(stream_resp) if stream_resp.get("done") is True else None
),
)
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
verbose=self.verbose,
)
yield chunk