Source code for langchain_tests.integration_tests.embeddings
from typing import List
from langchain_core.embeddings import Embeddings
from langchain_tests.unit_tests.embeddings import EmbeddingsTests
[docs]
class EmbeddingsIntegrationTests(EmbeddingsTests):
"""Base class for embeddings integration tests.
Test subclasses must implement the ``embeddings_class`` property to specify the
embeddings model to be tested. You can also override the
``embedding_model_params`` property to specify initialization parameters.
Example:
.. code-block:: python
from typing import Type
from langchain_tests.integration_tests import EmbeddingsIntegrationTests
from my_package.embeddings import MyEmbeddingsModel
class TestMyEmbeddingsModelIntegration(EmbeddingsIntegrationTests):
@property
def embeddings_class(self) -> Type[MyEmbeddingsModel]:
# Return the embeddings model class to test here
return MyEmbeddingsModel
@property
def embedding_model_params(self) -> dict:
# Return initialization parameters for the model.
return {"model": "model-001"}
.. note::
API references for individual test methods include troubleshooting tips.
"""
[docs]
def test_embed_query(self, model: Embeddings) -> None:
"""Test embedding a string query.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of floats when calling ``.embed_query`` on a string.
2. The length of the list is consistent across different inputs.
""" # noqa: E501
embedding_1 = model.embed_query("foo")
assert isinstance(embedding_1, List)
assert isinstance(embedding_1[0], float)
embedding_2 = model.embed_query("bar")
assert len(embedding_1) > 0
assert len(embedding_1) == len(embedding_2)
[docs]
def test_embed_documents(self, model: Embeddings) -> None:
"""Test embedding a list of strings.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of lists of floats when calling ``.embed_documents`` on a list of strings.
2. The length of each list is the same.
""" # noqa: E501
documents = ["foo", "bar", "baz"]
embeddings = model.embed_documents(documents)
assert len(embeddings) == len(documents)
assert all(isinstance(embedding, List) for embedding in embeddings)
assert all(isinstance(embedding[0], float) for embedding in embeddings)
assert len(embeddings[0]) > 0
assert all(len(embedding) == len(embeddings[0]) for embedding in embeddings)
[docs]
async def test_aembed_query(self, model: Embeddings) -> None:
"""Test embedding a string query async.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of floats when calling ``.aembed_query`` on a string.
2. The length of the list is consistent across different inputs.
""" # noqa: E501
embedding_1 = await model.aembed_query("foo")
assert isinstance(embedding_1, List)
assert isinstance(embedding_1[0], float)
embedding_2 = await model.aembed_query("bar")
assert len(embedding_1) > 0
assert len(embedding_1) == len(embedding_2)
[docs]
async def test_aembed_documents(self, model: Embeddings) -> None:
"""Test embedding a list of strings async.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of lists of floats when calling ``.aembed_documents`` on a list of strings.
2. The length of each list is the same.
""" # noqa: E501
documents = ["foo", "bar", "baz"]
embeddings = await model.aembed_documents(documents)
assert len(embeddings) == len(documents)
assert all(isinstance(embedding, List) for embedding in embeddings)
assert all(isinstance(embedding[0], float) for embedding in embeddings)
assert len(embeddings[0]) > 0
assert all(len(embedding) == len(embeddings[0]) for embedding in embeddings)