Source code for langchain_tests.unit_tests.tools
import os
from abc import abstractmethod
from typing import Tuple, Type, Union
from unittest import mock
import pytest
from langchain_core.tools import BaseTool
from pydantic import SecretStr
from langchain_tests.base import BaseStandardTests
class ToolsTests(BaseStandardTests):
"""
:private:
Base class for testing tools. This won't show in the documentation, but
the docstrings will be inherited by subclasses.
"""
@property
@abstractmethod
def tool_constructor(self) -> Union[Type[BaseTool], BaseTool]:
"""
Returns a class or instance of a tool to be tested.
"""
...
@property
def tool_constructor_params(self) -> dict:
"""
Returns a dictionary of parameters to pass to the tool constructor.
"""
return {}
@property
def tool_invoke_params_example(self) -> dict:
"""
Returns a dictionary representing the "args" of an example tool call.
This should NOT be a ToolCall dict - it should not
have {"name", "id", "args"} keys.
"""
return {}
@pytest.fixture
def tool(self) -> BaseTool:
"""
:private:
"""
if isinstance(self.tool_constructor, BaseTool):
if self.tool_constructor_params != {}:
msg = (
"If tool_constructor is an instance of BaseTool, "
"tool_constructor_params must be empty"
)
raise ValueError(msg)
return self.tool_constructor
return self.tool_constructor(**self.tool_constructor_params)
[docs]
class ToolsUnitTests(ToolsTests):
"""
Base class for tools unit tests.
"""
@property
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
"""Return env vars, init args, and expected instance attrs for initializing
from env vars."""
return {}, {}, {}
[docs]
def test_init(self) -> None:
"""
Test that the tool can be initialized with :attr:`tool_constructor` and
:attr:`tool_constructor_params`. If this fails, check that the
keyword args defined in :attr:`tool_constructor_params` are valid.
"""
if isinstance(self.tool_constructor, BaseTool):
tool = self.tool_constructor
else:
tool = self.tool_constructor(**self.tool_constructor_params)
assert tool is not None
[docs]
def test_init_from_env(self) -> None:
env_params, tools_params, expected_attrs = self.init_from_env_params
if env_params:
with mock.patch.dict(os.environ, env_params):
tool = self.tool_constructor(**tools_params)
assert tool is not None
for k, expected in expected_attrs.items():
actual = getattr(tool, k)
if isinstance(actual, SecretStr):
actual = actual.get_secret_value()
assert actual == expected
[docs]
def test_has_name(self, tool: BaseTool) -> None:
"""
Tests that the tool has a name attribute to pass to chat models.
If this fails, add a `name` parameter to your tool.
"""
assert tool.name
[docs]
def test_has_input_schema(self, tool: BaseTool) -> None:
"""
Tests that the tool has an input schema.
If this fails, add an `args_schema` to your tool.
See
`this guide <https://python.langchain.com/docs/how_to/custom_tools/#subclass-basetool>`_
and see how `CalculatorInput` is configured in the
`CustomCalculatorTool.args_schema` attribute
"""
assert tool.get_input_schema()
[docs]
def test_input_schema_matches_invoke_params(self, tool: BaseTool) -> None:
"""
Tests that the provided example params match the declared input schema.
If this fails, update the `tool_invoke_params_example` attribute to match
the input schema (`args_schema`) of the tool.
"""
# this will be a pydantic object
input_schema = tool.get_input_schema()
assert input_schema(**self.tool_invoke_params_example)