Source code for langchain_tests.unit_tests.tools

import os
from abc import abstractmethod
from typing import Tuple, Type, Union
from unittest import mock

import pytest
from langchain_core.tools import BaseTool
from pydantic import SecretStr

from langchain_tests.base import BaseStandardTests


class ToolsTests(BaseStandardTests):
    """
    :private:
    Base class for testing tools. This won't show in the documentation, but
    the docstrings will be inherited by subclasses.
    """

    @property
    @abstractmethod
    def tool_constructor(self) -> Union[Type[BaseTool], BaseTool]:
        """
        Returns a class or instance of a tool to be tested.
        """
        ...

    @property
    def tool_constructor_params(self) -> dict:
        """
        Returns a dictionary of parameters to pass to the tool constructor.
        """
        return {}

    @property
    def tool_invoke_params_example(self) -> dict:
        """
        Returns a dictionary representing the "args" of an example tool call.

        This should NOT be a ToolCall dict - it should not
        have {"name", "id", "args"} keys.
        """
        return {}

    @pytest.fixture
    def tool(self) -> BaseTool:
        """
        :private:
        """
        if isinstance(self.tool_constructor, BaseTool):
            if self.tool_constructor_params != {}:
                msg = (
                    "If tool_constructor is an instance of BaseTool, "
                    "tool_constructor_params must be empty"
                )
                raise ValueError(msg)
            return self.tool_constructor
        return self.tool_constructor(**self.tool_constructor_params)


[docs] class ToolsUnitTests(ToolsTests): """ Base class for tools unit tests. """ @property def init_from_env_params(self) -> Tuple[dict, dict, dict]: """Return env vars, init args, and expected instance attrs for initializing from env vars.""" return {}, {}, {}
[docs] def test_init(self) -> None: """ Test that the tool can be initialized with :attr:`tool_constructor` and :attr:`tool_constructor_params`. If this fails, check that the keyword args defined in :attr:`tool_constructor_params` are valid. """ if isinstance(self.tool_constructor, BaseTool): tool = self.tool_constructor else: tool = self.tool_constructor(**self.tool_constructor_params) assert tool is not None
[docs] def test_init_from_env(self) -> None: env_params, tools_params, expected_attrs = self.init_from_env_params if env_params: with mock.patch.dict(os.environ, env_params): tool = self.tool_constructor(**tools_params) assert tool is not None for k, expected in expected_attrs.items(): actual = getattr(tool, k) if isinstance(actual, SecretStr): actual = actual.get_secret_value() assert actual == expected
[docs] def test_has_name(self, tool: BaseTool) -> None: """ Tests that the tool has a name attribute to pass to chat models. If this fails, add a `name` parameter to your tool. """ assert tool.name
[docs] def test_has_input_schema(self, tool: BaseTool) -> None: """ Tests that the tool has an input schema. If this fails, add an `args_schema` to your tool. See `this guide <https://python.langchain.com/docs/how_to/custom_tools/#subclass-basetool>`_ and see how `CalculatorInput` is configured in the `CustomCalculatorTool.args_schema` attribute """ assert tool.get_input_schema()
[docs] def test_input_schema_matches_invoke_params(self, tool: BaseTool) -> None: """ Tests that the provided example params match the declared input schema. If this fails, update the `tool_invoke_params_example` attribute to match the input schema (`args_schema`) of the tool. """ # this will be a pydantic object input_schema = tool.get_input_schema() assert input_schema(**self.tool_invoke_params_example)