"""Wrapper around Together AI's Chat Completions API."""fromtypingimport(Any,Dict,List,Optional,)importopenaifromlangchain_core.language_models.chat_modelsimportLangSmithParamsfromlangchain_core.utilsimportfrom_env,secret_from_envfromlangchain_openai.chat_models.baseimportBaseChatOpenAIfrompydanticimportConfigDict,Field,SecretStr,model_validatorfromtyping_extensionsimportSelf
[docs]classChatTogether(BaseChatOpenAI):r"""ChatTogether chat model. Setup: Install ``langchain-together`` and set environment variable ``TOGETHER_API_KEY``. .. code-block:: bash pip install -U langchain-together export TOGETHER_API_KEY="your-api-key" Key init args — completion params: model: str Name of model to use. temperature: float Sampling temperature. max_tokens: Optional[int] Max number of tokens to generate. logprobs: Optional[bool] Whether to return logprobs. Key init args — client params: timeout: Union[float, Tuple[float, float], Any, None] Timeout for requests. max_retries: int Max number of retries. api_key: Optional[str] Together API key. If not passed in will be read from env var OPENAI_API_KEY. Instantiate: .. code-block:: python from langhcain_together import ChatTogether llm = ChatTogether( model="meta-llama/Llama-3-70b-chat-hf", temperature=0, max_tokens=None, timeout=None, max_retries=2, # api_key="...", # other params... ) Invoke: .. code-block:: python messages = [ ( "system", "You are a helpful translator. Translate the user sentence to French.", ), ("human", "I love programming."), ] llm.invoke(messages) .. code-block:: python AIMessage( content="J'adore la programmation.", response_metadata={ 'token_usage': {'completion_tokens': 9, 'prompt_tokens': 32, 'total_tokens': 41}, 'model_name': 'meta-llama/Llama-3-70b-chat-hf', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None }, id='run-168dceca-3b8b-4283-94e3-4c739dbc1525-0', usage_metadata={'input_tokens': 32, 'output_tokens': 9, 'total_tokens': 41}) Stream: .. code-block:: python for chunk in llm.stream(messages): print(chunk) .. code-block:: python content='J' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content="'" id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content='ad' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content='ore' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content=' la' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content=' programm' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content='ation' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content='.' id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' content='' response_metadata={'finish_reason': 'stop', 'model_name': 'meta-llama/Llama-3-70b-chat-hf'} id='run-1bc996b5-293f-4114-96a1-e0f755c05eb9' Async: .. code-block:: python await llm.ainvoke(messages) # stream: # async for chunk in (await llm.astream(messages)) # batch: # await llm.abatch([messages]) .. code-block:: python AIMessage( content="J'adore la programmation.", response_metadata={ 'token_usage': {'completion_tokens': 9, 'prompt_tokens': 32, 'total_tokens': 41}, 'model_name': 'meta-llama/Llama-3-70b-chat-hf', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None }, id='run-09371a11-7f72-4c53-8e7c-9de5c238b34c-0', usage_metadata={'input_tokens': 32, 'output_tokens': 9, 'total_tokens': 41}) Tool calling: .. code-block:: python from pydantic import BaseModel, Field # Only certain models support tool calling, check the together website to confirm compatibility llm = ChatTogether(model="mistralai/Mixtral-8x7B-Instruct-v0.1") class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) llm_with_tools = llm.bind_tools([GetWeather, GetPopulation]) ai_msg = llm_with_tools.invoke( "Which city is bigger: LA or NY?" ) ai_msg.tool_calls .. code-block:: python [ { 'name': 'GetPopulation', 'args': {'location': 'NY'}, 'id': 'call_m5tstyn2004pre9bfuxvom8x', 'type': 'tool_call' }, { 'name': 'GetPopulation', 'args': {'location': 'LA'}, 'id': 'call_0vjgq455gq1av5sp9eb1pw6a', 'type': 'tool_call' } ] Structured output: .. code-block:: python from typing import Optional from pydantic import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10") structured_llm = llm.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats") .. code-block:: python Joke( setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=7 ) JSON mode: .. code-block:: python json_llm = llm.bind(response_format={"type": "json_object"}) ai_msg = json_llm.invoke( "Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]" ) ai_msg.content .. code-block:: python ' {\\n"random_ints": [\\n13,\\n54,\\n78,\\n45,\\n67,\\n90,\\n11,\\n29,\\n84,\\n33\\n]\\n}' Token usage: .. code-block:: python ai_msg = llm.invoke(messages) ai_msg.usage_metadata .. code-block:: python {'input_tokens': 37, 'output_tokens': 6, 'total_tokens': 43} Logprobs: .. code-block:: python logprobs_llm = llm.bind(logprobs=True) messages=[("human","Say Hello World! Do not return anything else.")] ai_msg = logprobs_llm.invoke(messages) ai_msg.response_metadata["logprobs"] .. code-block:: python { 'content': None, 'token_ids': [22557, 3304, 28808, 2], 'tokens': [' Hello', ' World', '!', '</s>'], 'token_logprobs': [-4.7683716e-06, -5.9604645e-07, 0, -0.057373047] } Response metadata .. code-block:: python ai_msg = llm.invoke(messages) ai_msg.response_metadata .. code-block:: python { 'token_usage': { 'completion_tokens': 4, 'prompt_tokens': 19, 'total_tokens': 23 }, 'model_name': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'system_fingerprint': None, 'finish_reason': 'eos', 'logprobs': None } """# noqa: E501@propertydeflc_secrets(self)->Dict[str,str]:"""A map of constructor argument names to secret ids. For example, {"together_api_key": "TOGETHER_API_KEY"} """return{"together_api_key":"TOGETHER_API_KEY"}@classmethoddefget_lc_namespace(cls)->List[str]:"""Get the namespace of the langchain object."""return["langchain","chat_models","together"]@propertydeflc_attributes(self)->Dict[str,Any]:"""List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. """attributes:Dict[str,Any]={}ifself.together_api_base:attributes["together_api_base"]=self.together_api_basereturnattributes@propertydef_llm_type(self)->str:"""Return type of chat model."""return"together-chat"def_get_ls_params(self,stop:Optional[List[str]]=None,**kwargs:Any)->LangSmithParams:"""Get the parameters used to invoke the model."""params=super()._get_ls_params(stop=stop,**kwargs)params["ls_provider"]="together"returnparamsmodel_name:str=Field(default="meta-llama/Llama-3-8b-chat-hf",alias="model")"""Model name to use."""together_api_key:Optional[SecretStr]=Field(alias="api_key",default_factory=secret_from_env("TOGETHER_API_KEY",default=None),)"""Together AI API key. Automatically read from env variable `TOGETHER_API_KEY` if not provided. """together_api_base:str=Field(default_factory=from_env("TOGETHER_API_BASE",default="https://api.together.xyz/v1/"),alias="base_url",)model_config=ConfigDict(populate_by_name=True,)@model_validator(mode="after")defvalidate_environment(self)->Self:"""Validate that api key and python package exists in environment."""ifself.nisnotNoneandself.n<1:raiseValueError("n must be at least 1.")ifself.nisnotNoneandself.n>1andself.streaming:raiseValueError("n must be 1 when streaming.")client_params:dict={"api_key":(self.together_api_key.get_secret_value()ifself.together_api_keyelseNone),"base_url":self.together_api_base,"timeout":self.request_timeout,"default_headers":self.default_headers,"default_query":self.default_query,}ifself.max_retriesisnotNone:client_params["max_retries"]=self.max_retriesifnot(self.clientorNone):sync_specific:dict={"http_client":self.http_client}self.client=openai.OpenAI(**client_params,**sync_specific).chat.completionsifnot(self.async_clientorNone):async_specific:dict={"http_client":self.http_async_client}self.async_client=openai.AsyncOpenAI(**client_params,**async_specific).chat.completionsreturnself