from __future__ import annotations
import os
from operator import itemgetter
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
overload,
)
import openai
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
LangSmithParams,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
JsonOutputKeyToolsParser,
PydanticToolsParser,
)
from langchain_core.outputs import ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import from_env, secret_from_env
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_openai.chat_models.base import (
BaseChatOpenAI,
_AllReturnType,
_convert_message_to_dict,
_DictOrPydantic,
_DictOrPydanticClass,
_is_pydantic_class,
)
from pydantic import BaseModel, Field, SecretStr, model_validator
from tokenizers import Tokenizer
from typing_extensions import Self
from langchain_upstage.document_parse import UpstageDocumentParseLoader
DOC_PARSING_MODEL = ["solar-pro"]
SOLAR_TOKENIZERS = {
"solar-pro": "upstage/solar-pro-preview-tokenizer",
"solar-1-mini-chat": "upstage/solar-1-mini-tokenizer",
"solar-docvision": "upstage/solar-docvision-preview-tokenizer",
}
[docs]
class ChatUpstage(BaseChatOpenAI):
"""ChatUpstage chat model.
To use, you should have the environment variable `UPSTAGE_API_KEY`
set with your API key or pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_upstage import ChatUpstage
model = ChatUpstage()
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"upstage_api_key": "UPSTAGE_API_KEY"}
@classmethod
def get_lc_namespace(cls) -> List[str]:
return ["langchain", "chat_models", "upstage"]
@property
def lc_attributes(self) -> Dict[str, Any]:
attributes: Dict[str, Any] = {}
if self.upstage_api_base:
attributes["upstage_api_base"] = self.upstage_api_base
return attributes
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "upstage-chat"
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get the parameters used to invoke the model."""
params = super()._get_ls_params(stop=stop, **kwargs)
params["ls_provider"] = "upstage"
return params
model_name: str = Field(default="solar-1-mini-chat", alias="model")
"""Model name to use."""
upstage_api_key: SecretStr = Field(
default_factory=secret_from_env(
"UPSTAGE_API_KEY",
error_message=(
"You must specify an api key. "
"You can pass it an argument as `api_key=...` or "
"set the environment variable `UPSTAGE_API_KEY`."
),
),
alias="api_key",
)
"""Automatically inferred from env are `UPSTAGE_API_KEY` if not provided."""
upstage_api_base: Optional[str] = Field(
default_factory=from_env(
"UPSTAGE_API_BASE", default="https://api.upstage.ai/v1/solar"
),
alias="base_url",
)
"""Base URL path for API requests, leave blank if not using a proxy or service
emulator."""
openai_api_key: Optional[SecretStr] = Field(default=None)
"""openai api key is not supported for upstage. use `upstage_api_key` instead."""
openai_api_base: Optional[str] = Field(default=None)
"""openai api base is not supported for upstage. use `upstage_api_base` instead."""
openai_organization: Optional[str] = Field(default=None)
"""openai organization is not supported for upstage."""
tiktoken_model_name: Optional[str] = None
"""tiktoken is not supported for upstage."""
tokenizer_name: Optional[str] = "upstage/solar-pro-preview-tokenizer"
"""huggingface tokenizer name. Solar tokenizer is opened in huggingface https://huggingface.co/upstage/solar-pro-preview-tokenizer"""
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if self.n < 1:
raise ValueError("n must be at least 1.")
if self.n > 1 and self.streaming:
raise ValueError("n must be 1 when streaming.")
client_params: dict = {
"api_key": (
self.upstage_api_key.get_secret_value()
if self.upstage_api_key
else None
),
"base_url": self.upstage_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if not (self.client or None):
sync_specific: dict = {"http_client": self.http_client}
self.client = openai.OpenAI(
**client_params, **sync_specific
).chat.completions
if not (self.async_client or None):
async_specific: dict = {"http_client": self.http_async_client}
self.async_client = openai.AsyncOpenAI(
**client_params, **async_specific
).chat.completions
return self
def _get_tokenizer(self) -> Tokenizer:
self.tokenizer_name = SOLAR_TOKENIZERS.get(self.model_name, self.tokenizer_name)
return Tokenizer.from_pretrained(self.tokenizer_name)
[docs]
def get_token_ids(self, text: str) -> List[int]:
"""Get the tokens present in the text."""
tokenizer = self._get_tokenizer()
encode = tokenizer.encode(text, add_special_tokens=False)
return encode.ids
[docs]
def get_num_tokens_from_messages(
self, messages: List[BaseMessage], tools: Sequence[Any] | None = None
) -> int:
"""Calculate num tokens for solar model."""
tokenizer = self._get_tokenizer()
tokens_per_message = 5 # <|im_start|>{role}\n{message}<|im_end|>
tokens_prefix = 1 # <|startoftext|>
tokens_suffix = 3 # <|im_start|>assistant\n
num_tokens = 0
num_tokens += tokens_prefix
messages_dict = [_convert_message_to_dict(m) for m in messages]
for message in messages_dict:
num_tokens += tokens_per_message
for key, value in message.items():
# Cast str(value) in case the message value is not a string
# This occurs with function messages
num_tokens += len(
tokenizer.encode(str(value), add_special_tokens=False)
)
# every reply is primed with <|im_start|>assistant
num_tokens += tokens_suffix
return num_tokens
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = self._default_params
if stop is not None:
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
using_doc_parsing_model = self._using_doc_parsing_model(kwargs)
if using_doc_parsing_model:
document_contents = self._parse_documents(kwargs.pop("file_path"))
messages.append(HumanMessage(document_contents))
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
payload = self._get_request_payload(messages, stop=stop, **kwargs)
response = self.client.create(**payload)
return self._create_chat_result(response)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
using_doc_parsing_model = self._using_doc_parsing_model(kwargs)
if using_doc_parsing_model:
document_contents = self._parse_documents(kwargs.pop("file_path"))
messages.append(HumanMessage(document_contents))
if self.streaming:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
payload = self._get_request_payload(messages, stop=stop, **kwargs)
response = await self.async_client.create(**payload)
return self._create_chat_result(response)
def _using_doc_parsing_model(self, kwargs: Dict[str, Any]) -> bool:
if "file_path" in kwargs:
if self.model_name in DOC_PARSING_MODEL:
return True
raise ValueError("file_path is not supported for this model.")
return False
def _parse_documents(self, file_path: str) -> str:
document_contents = "Documents:\n"
loader = UpstageDocumentParseLoader(
api_key=(
self.upstage_api_key.get_secret_value()
if self.upstage_api_key
else None
),
file_path=file_path,
output_format="text",
coordinates=False,
)
docs = loader.load()
if isinstance(file_path, list):
file_titles = [os.path.basename(path) for path in file_path]
else:
file_titles = [os.path.basename(file_path)]
for i, doc in enumerate(docs):
file_title = file_titles[min(i, len(file_titles) - 1)]
document_contents += f"{file_title}:\n{doc.page_content}\n\n"
return document_contents
def _get_request_payload(
self,
input_: LanguageModelInput,
*,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> dict:
messages = self._convert_input(input_).to_messages()
if stop is not None:
kwargs["stop"] = stop
return {
"messages": [_convert_message_to_dict(m) for m in messages],
**self._default_params,
**kwargs,
}
# TODO: Fix typing.
@overload # type: ignore[override]
def with_structured_output(
self,
schema: Optional[_DictOrPydanticClass] = None,
*,
include_raw: Literal[True] = True,
**kwargs: Any,
) -> Runnable[LanguageModelInput, _AllReturnType]:
...
@overload
def with_structured_output(
self,
schema: Optional[_DictOrPydanticClass] = None,
*,
include_raw: Literal[False] = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
...
[docs]
def with_structured_output(
self,
schema: Optional[_DictOrPydanticClass] = None,
*,
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict. With a Pydantic class the returned
attributes will be validated, whereas with a dict they will not be. If
`method` is "function_calling" and `schema` is a dict, then the dict
must match the OpenAI function-calling spec or be a valid JSON schema
with top level 'title' and 'description' keys specified.
include_raw: If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
Returns:
A Runnable that takes any ChatModel input and returns as output:
If include_raw is True then a dict with keys:
raw: BaseMessage
parsed: Optional[_DictOrPydantic]
parsing_error: Optional[BaseException]
If include_raw is False then just _DictOrPydantic is returned,
where _DictOrPydantic depends on the schema:
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
class.
If schema is a dict then _DictOrPydantic is a dict.
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
.. code-block:: python
from langchain_upstage import ChatUpstage
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatUpstage(model="solar-1-mini-chat", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
.. code-block:: python
from langchain_upstage import ChatUpstage
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatUpstage(model="solar-1-mini-chat", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
.. code-block:: python
from langchain_upstage import ChatUpstage
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatUpstage(model="solar-1-mini-chat", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
""" # noqa: E501
if kwargs:
raise ValueError(f"Received unsupported arguments {kwargs}")
is_pydantic_schema = _is_pydantic_class(schema)
if schema is None:
raise ValueError("schema must be specified. Received None.")
tool_name = convert_to_openai_tool(schema)["function"]["name"]
llm = self.bind_tools([schema], tool_choice=tool_name)
if is_pydantic_schema:
output_parser: OutputParserLike = PydanticToolsParser(
tools=[cast(type, schema)], first_tool_only=True
)
else:
output_parser = JsonOutputKeyToolsParser(
key_name=tool_name, first_tool_only=True
)
if include_raw:
parser_assign = RunnablePassthrough.assign(
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
)
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
parser_with_fallback = parser_assign.with_fallbacks(
[parser_none], exception_key="parsing_error"
)
return RunnableMap(raw=llm) | parser_with_fallback
else:
return llm | output_parser