Source code for langchain_upstage.chat_models

from __future__ import annotations

import os
from operator import itemgetter
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
    overload,
)

import openai
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    LangSmithParams,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
    JsonOutputKeyToolsParser,
    PydanticToolsParser,
)
from langchain_core.outputs import ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import from_env, secret_from_env
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_openai.chat_models.base import (
    BaseChatOpenAI,
    _AllReturnType,
    _convert_message_to_dict,
    _DictOrPydantic,
    _DictOrPydanticClass,
    _is_pydantic_class,
)
from pydantic import BaseModel, Field, SecretStr, model_validator
from tokenizers import Tokenizer
from typing_extensions import Self

from langchain_upstage.document_parse import UpstageDocumentParseLoader

DOC_PARSING_MODEL = ["solar-pro"]
SOLAR_TOKENIZERS = {
    "solar-pro": "upstage/solar-pro-preview-tokenizer",
    "solar-1-mini-chat": "upstage/solar-1-mini-tokenizer",
    "solar-docvision": "upstage/solar-docvision-preview-tokenizer",
}


[docs] class ChatUpstage(BaseChatOpenAI): """ChatUpstage chat model. To use, you should have the environment variable `UPSTAGE_API_KEY` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_upstage import ChatUpstage model = ChatUpstage() """ @property def lc_secrets(self) -> Dict[str, str]: return {"upstage_api_key": "UPSTAGE_API_KEY"} @classmethod def get_lc_namespace(cls) -> List[str]: return ["langchain", "chat_models", "upstage"] @property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.upstage_api_base: attributes["upstage_api_base"] = self.upstage_api_base return attributes @property def _llm_type(self) -> str: """Return type of chat model.""" return "upstage-chat" def _get_ls_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> LangSmithParams: """Get the parameters used to invoke the model.""" params = super()._get_ls_params(stop=stop, **kwargs) params["ls_provider"] = "upstage" return params model_name: str = Field(default="solar-1-mini-chat", alias="model") """Model name to use.""" upstage_api_key: SecretStr = Field( default_factory=secret_from_env( "UPSTAGE_API_KEY", error_message=( "You must specify an api key. " "You can pass it an argument as `api_key=...` or " "set the environment variable `UPSTAGE_API_KEY`." ), ), alias="api_key", ) """Automatically inferred from env are `UPSTAGE_API_KEY` if not provided.""" upstage_api_base: Optional[str] = Field( default_factory=from_env( "UPSTAGE_API_BASE", default="https://api.upstage.ai/v1/solar" ), alias="base_url", ) """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_api_key: Optional[SecretStr] = Field(default=None) """openai api key is not supported for upstage. use `upstage_api_key` instead.""" openai_api_base: Optional[str] = Field(default=None) """openai api base is not supported for upstage. use `upstage_api_base` instead.""" openai_organization: Optional[str] = Field(default=None) """openai organization is not supported for upstage.""" tiktoken_model_name: Optional[str] = None """tiktoken is not supported for upstage.""" tokenizer_name: Optional[str] = "upstage/solar-pro-preview-tokenizer" """huggingface tokenizer name. Solar tokenizer is opened in huggingface https://huggingface.co/upstage/solar-pro-preview-tokenizer""" @model_validator(mode="after") def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" if self.n < 1: raise ValueError("n must be at least 1.") if self.n > 1 and self.streaming: raise ValueError("n must be 1 when streaming.") client_params: dict = { "api_key": ( self.upstage_api_key.get_secret_value() if self.upstage_api_key else None ), "base_url": self.upstage_api_base, "timeout": self.request_timeout, "max_retries": self.max_retries, "default_headers": self.default_headers, "default_query": self.default_query, } if not (self.client or None): sync_specific: dict = {"http_client": self.http_client} self.client = openai.OpenAI( **client_params, **sync_specific ).chat.completions if not (self.async_client or None): async_specific: dict = {"http_client": self.http_async_client} self.async_client = openai.AsyncOpenAI( **client_params, **async_specific ).chat.completions return self def _get_tokenizer(self) -> Tokenizer: self.tokenizer_name = SOLAR_TOKENIZERS.get(self.model_name, self.tokenizer_name) return Tokenizer.from_pretrained(self.tokenizer_name)
[docs] def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text.""" tokenizer = self._get_tokenizer() encode = tokenizer.encode(text, add_special_tokens=False) return encode.ids
[docs] def get_num_tokens_from_messages( self, messages: List[BaseMessage], tools: Sequence[Any] | None = None ) -> int: """Calculate num tokens for solar model.""" tokenizer = self._get_tokenizer() tokens_per_message = 5 # <|im_start|>{role}\n{message}<|im_end|> tokens_prefix = 1 # <|startoftext|> tokens_suffix = 3 # <|im_start|>assistant\n num_tokens = 0 num_tokens += tokens_prefix messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): # Cast str(value) in case the message value is not a string # This occurs with function messages num_tokens += len( tokenizer.encode(str(value), add_special_tokens=False) ) # every reply is primed with <|im_start|>assistant num_tokens += tokens_suffix return num_tokens
def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._default_params if stop is not None: params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: using_doc_parsing_model = self._using_doc_parsing_model(kwargs) if using_doc_parsing_model: document_contents = self._parse_documents(kwargs.pop("file_path")) messages.append(HumanMessage(document_contents)) if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) payload = self._get_request_payload(messages, stop=stop, **kwargs) response = self.client.create(**payload) return self._create_chat_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: using_doc_parsing_model = self._using_doc_parsing_model(kwargs) if using_doc_parsing_model: document_contents = self._parse_documents(kwargs.pop("file_path")) messages.append(HumanMessage(document_contents)) if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) payload = self._get_request_payload(messages, stop=stop, **kwargs) response = await self.async_client.create(**payload) return self._create_chat_result(response) def _using_doc_parsing_model(self, kwargs: Dict[str, Any]) -> bool: if "file_path" in kwargs: if self.model_name in DOC_PARSING_MODEL: return True raise ValueError("file_path is not supported for this model.") return False def _parse_documents(self, file_path: str) -> str: document_contents = "Documents:\n" loader = UpstageDocumentParseLoader( api_key=( self.upstage_api_key.get_secret_value() if self.upstage_api_key else None ), file_path=file_path, output_format="text", coordinates=False, ) docs = loader.load() if isinstance(file_path, list): file_titles = [os.path.basename(path) for path in file_path] else: file_titles = [os.path.basename(file_path)] for i, doc in enumerate(docs): file_title = file_titles[min(i, len(file_titles) - 1)] document_contents += f"{file_title}:\n{doc.page_content}\n\n" return document_contents def _get_request_payload( self, input_: LanguageModelInput, *, stop: Optional[List[str]] = None, **kwargs: Any, ) -> dict: messages = self._convert_input(input_).to_messages() if stop is not None: kwargs["stop"] = stop return { "messages": [_convert_message_to_dict(m) for m in messages], **self._default_params, **kwargs, } # TODO: Fix typing. @overload # type: ignore[override] def with_structured_output( self, schema: Optional[_DictOrPydanticClass] = None, *, include_raw: Literal[True] = True, **kwargs: Any, ) -> Runnable[LanguageModelInput, _AllReturnType]: ... @overload def with_structured_output( self, schema: Optional[_DictOrPydanticClass] = None, *, include_raw: Literal[False] = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, _DictOrPydantic]: ...
[docs] def with_structured_output( self, schema: Optional[_DictOrPydanticClass] = None, *, include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, _DictOrPydantic]: """Model wrapper that returns outputs formatted to match the given schema. Args: schema: The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If `method` is "function_calling" and `schema` is a dict, then the dict must match the OpenAI function-calling spec or be a valid JSON schema with top level 'title' and 'description' keys specified. include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". Returns: A Runnable that takes any ChatModel input and returns as output: If include_raw is True then a dict with keys: raw: BaseMessage parsed: Optional[_DictOrPydantic] parsing_error: Optional[BaseException] If include_raw is False then just _DictOrPydantic is returned, where _DictOrPydantic depends on the schema: If schema is a Pydantic class then _DictOrPydantic is the Pydantic class. If schema is a dict then _DictOrPydantic is a dict. Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_upstage import ChatUpstage from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatUpstage(model="solar-1-mini-chat", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # ) Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True): .. code-block:: python from langchain_upstage import ChatUpstage from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatUpstage(model="solar-1-mini-chat", temperature=0) structured_llm = llm.with_structured_output( AnswerWithJustification, include_raw=True ) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # } Example: Function-calling, dict schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_upstage import ChatUpstage from langchain_core.utils.function_calling import convert_to_openai_tool from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatUpstage(model="solar-1-mini-chat", temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # } """ # noqa: E501 if kwargs: raise ValueError(f"Received unsupported arguments {kwargs}") is_pydantic_schema = _is_pydantic_class(schema) if schema is None: raise ValueError("schema must be specified. Received None.") tool_name = convert_to_openai_tool(schema)["function"]["name"] llm = self.bind_tools([schema], tool_choice=tool_name) if is_pydantic_schema: output_parser: OutputParserLike = PydanticToolsParser( tools=[cast(type, schema)], first_tool_only=True ) else: output_parser = JsonOutputKeyToolsParser( key_name=tool_name, first_tool_only=True ) if include_raw: parser_assign = RunnablePassthrough.assign( parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None ) parser_none = RunnablePassthrough.assign(parsed=lambda _: None) parser_with_fallback = parser_assign.with_fallbacks( [parser_none], exception_key="parsing_error" ) return RunnableMap(raw=llm) | parser_with_fallback else: return llm | output_parser
[docs] def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], *, tool_choice: Optional[Union[dict, str, Literal["auto"], bool]] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tool-like objects to this chat model. Assumes model is compatible with Upstage tool-calling API. Args: tools: A list of tool definitions to bind to this chat model. Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. tool_choice: Which tool to require the model to call. Options are: name of the tool (str): calls corresponding tool; "auto": automatically selects a tool (including no tool); "none": does not call a tool; True: forces tool call (requires `tools` be length 1); False: no effect; or a dict of the form: {"type": "function", "function": {"name": <<tool_name>>}}. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ formatted_tools = [convert_to_openai_tool(tool) for tool in tools] if tool_choice: if isinstance(tool_choice, str): # tool_choice is a tool/function name if tool_choice in ("any", "required", "auto"): tool_choice = "auto" elif tool_choice == "none": tool_choice = "none" else: tool_choice = { "type": "function", "function": {"name": tool_choice}, } elif isinstance(tool_choice, bool): tool_choice = "auto" elif isinstance(tool_choice, dict): tool_names = [ formatted_tool["function"]["name"] for formatted_tool in formatted_tools ] if not any( tool_name == tool_choice["function"]["name"] for tool_name in tool_names ): raise ValueError( f"Tool choice {tool_choice} was specified, but the only " f"provided tools were {tool_names}." ) else: raise ValueError( f"Unrecognized tool_choice type. Expected str, bool or dict. " f"Received: {tool_choice}" ) kwargs["tool_choice"] = tool_choice return super().bind(tools=formatted_tools, **kwargs)