"""Private logic for creating pydantic dataclasses."""from__future__importannotationsas_annotationsimportdataclassesimporttypingimportwarningsfromfunctoolsimportpartial,wrapsfromtypingimportAny,ClassVarfrompydantic_coreimport(ArgsKwargs,SchemaSerializer,SchemaValidator,core_schema,)fromtyping_extensionsimportTypeGuardfrom..errorsimportPydanticUndefinedAnnotationfrom..plugin._schema_validatorimportPluggableSchemaValidator,create_schema_validatorfrom..warningsimportPydanticDeprecatedSince20from.import_config,_decoratorsfrom._fieldsimportcollect_dataclass_fieldsfrom._generate_schemaimportGenerateSchema,InvalidSchemaErrorfrom._genericsimportget_standard_typevars_mapfrom._mock_val_serimportset_dataclass_mocksfrom._namespace_utilsimportNsResolverfrom._signatureimportgenerate_pydantic_signaturefrom._utilsimportLazyClassAttributeiftyping.TYPE_CHECKING:from_typeshedimportDataclassInstanceasStandardDataclassfrom..configimportConfigDictfrom..fieldsimportFieldInfoclassPydanticDataclass(StandardDataclass,typing.Protocol):"""A protocol containing attributes only available once a class has been decorated as a Pydantic dataclass. Attributes: __pydantic_config__: Pydantic-specific configuration settings for the dataclass. __pydantic_complete__: Whether dataclass building is completed, or if there are still undefined fields. __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer. __pydantic_decorators__: Metadata containing the decorators defined on the dataclass. __pydantic_fields__: Metadata about the fields defined on the dataclass. __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the dataclass. __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the dataclass. """__pydantic_config__:ClassVar[ConfigDict]__pydantic_complete__:ClassVar[bool]__pydantic_core_schema__:ClassVar[core_schema.CoreSchema]__pydantic_decorators__:ClassVar[_decorators.DecoratorInfos]__pydantic_fields__:ClassVar[dict[str,FieldInfo]]__pydantic_serializer__:ClassVar[SchemaSerializer]__pydantic_validator__:ClassVar[SchemaValidator|PluggableSchemaValidator]else:# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915# and https://youtrack.jetbrains.com/issue/PY-51428DeprecationWarning=PydanticDeprecatedSince20defset_dataclass_fields(cls:type[StandardDataclass],ns_resolver:NsResolver|None=None,config_wrapper:_config.ConfigWrapper|None=None,)->None:"""Collect and set `cls.__pydantic_fields__`. Args: cls: The class. ns_resolver: Namespace resolver to use when getting dataclass annotations. config_wrapper: The config wrapper instance, defaults to `None`. """typevars_map=get_standard_typevars_map(cls)fields=collect_dataclass_fields(cls,ns_resolver=ns_resolver,typevars_map=typevars_map,config_wrapper=config_wrapper)cls.__pydantic_fields__=fields# type: ignoredefcomplete_dataclass(cls:type[Any],config_wrapper:_config.ConfigWrapper,*,raise_errors:bool=True,ns_resolver:NsResolver|None=None,_force_build:bool=False,)->bool:"""Finish building a pydantic dataclass. This logic is called on a class which has already been wrapped in `dataclasses.dataclass()`. This is somewhat analogous to `pydantic._internal._model_construction.complete_model_class`. Args: cls: The class. config_wrapper: The config wrapper instance. raise_errors: Whether to raise errors, defaults to `True`. ns_resolver: The namespace resolver instance to use when collecting dataclass fields and during schema building. _force_build: Whether to force building the dataclass, no matter if [`defer_build`][pydantic.config.ConfigDict.defer_build] is set. Returns: `True` if building a pydantic dataclass is successfully completed, `False` otherwise. Raises: PydanticUndefinedAnnotation: If `raise_error` is `True` and there is an undefined annotations. """original_init=cls.__init__# dataclass.__init__ must be defined here so its `__qualname__` can be changed since functions can't be copied,# and so that the mock validator is used if building was deferred:def__init__(__dataclass_self__:PydanticDataclass,*args:Any,**kwargs:Any)->None:__tracebackhide__=Trues=__dataclass_self__s.__pydantic_validator__.validate_python(ArgsKwargs(args,kwargs),self_instance=s)__init__.__qualname__=f'{cls.__qualname__}.__init__'cls.__init__=__init__# type: ignorecls.__pydantic_config__=config_wrapper.config_dict# type: ignoreset_dataclass_fields(cls,ns_resolver,config_wrapper=config_wrapper)ifnot_force_buildandconfig_wrapper.defer_build:set_dataclass_mocks(cls)returnFalseifhasattr(cls,'__post_init_post_parse__'):warnings.warn('Support for `__post_init_post_parse__` has been dropped, the method will not be called',DeprecationWarning)typevars_map=get_standard_typevars_map(cls)gen_schema=GenerateSchema(config_wrapper,ns_resolver=ns_resolver,typevars_map=typevars_map,)# set __signature__ attr only for the class, but not for its instances# (because instances can define `__call__`, and `inspect.signature` shouldn't# use the `__signature__` attribute and instead generate from `__call__`).cls.__signature__=LazyClassAttribute('__signature__',partial(generate_pydantic_signature,# It's important that we reference the `original_init` here,# as it is the one synthesized by the stdlib `dataclass` module:init=original_init,fields=cls.__pydantic_fields__,# type: ignorevalidate_by_name=config_wrapper.validate_by_name,extra=config_wrapper.extra,is_dataclass=True,),)try:schema=gen_schema.generate_schema(cls)exceptPydanticUndefinedAnnotationase:ifraise_errors:raiseset_dataclass_mocks(cls,f'`{e.name}`')returnFalsecore_config=config_wrapper.core_config(title=cls.__name__)try:schema=gen_schema.clean_schema(schema)exceptInvalidSchemaError:set_dataclass_mocks(cls)returnFalse# We are about to set all the remaining required properties expected for this cast;# __pydantic_decorators__ and __pydantic_fields__ should already be setcls=typing.cast('type[PydanticDataclass]',cls)# debug(schema)cls.__pydantic_core_schema__=schemacls.__pydantic_validator__=validator=create_schema_validator(schema,cls,cls.__module__,cls.__qualname__,'dataclass',core_config,config_wrapper.plugin_settings)cls.__pydantic_serializer__=SchemaSerializer(schema,core_config)ifconfig_wrapper.validate_assignment:@wraps(cls.__setattr__)defvalidated_setattr(instance:Any,field:str,value:str,/)->None:validator.validate_assignment(instance,field,value)cls.__setattr__=validated_setattr.__get__(None,cls)# type: ignorecls.__pydantic_complete__=TruereturnTruedefis_builtin_dataclass(_cls:type[Any])->TypeGuard[type[StandardDataclass]]:"""Returns True if a class is a stdlib dataclass and *not* a pydantic dataclass. We check that - `_cls` is a dataclass - `_cls` does not inherit from a processed pydantic dataclass (and thus have a `__pydantic_validator__`) - `_cls` does not have any annotations that are not dataclass fields e.g. ```python import dataclasses import pydantic.dataclasses @dataclasses.dataclass class A: x: int @pydantic.dataclasses.dataclass class B(A): y: int ``` In this case, when we first check `B`, we make an extra check and look at the annotations ('y'), which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x') Args: cls: The class. Returns: `True` if the class is a stdlib dataclass, `False` otherwise. """return(dataclasses.is_dataclass(_cls)andnothasattr(_cls,'__pydantic_validator__')andset(_cls.__dataclass_fields__).issuperset(set(getattr(_cls,'__annotations__',{}))))