# sql/type_api.py# Copyright (C) 2005-2025 the SQLAlchemy authors and contributors# <see AUTHORS file>## This module is part of SQLAlchemy and is released under# the MIT License: https://www.opensource.org/licenses/mit-license.php"""Base types API."""from__future__importannotationsfromenumimportEnumfromtypesimportModuleTypeimporttypingfromtypingimportAnyfromtypingimportCallablefromtypingimportcastfromtypingimportDictfromtypingimportGenericfromtypingimportMappingfromtypingimportNewTypefromtypingimportOptionalfromtypingimportoverloadfromtypingimportSequencefromtypingimportTuplefromtypingimportTypefromtypingimportTYPE_CHECKINGfromtypingimportTypeVarfromtypingimportUnionfrom.baseimportSchemaEventTargetfrom.cache_keyimportCacheConstfrom.cache_keyimportNO_CACHEfrom.operatorsimportColumnOperatorsfrom.visitorsimportVisitablefrom..importexcfrom..importutilfrom..util.typingimportProtocolfrom..util.typingimportSelffrom..util.typingimportTypeAliasTypefrom..util.typingimportTypedDictfrom..util.typingimportTypeGuard# these are back-assigned by sqltypes.iftyping.TYPE_CHECKING:from._typingimport_TypeEngineArgumentfrom.elementsimportBindParameterfrom.elementsimportColumnElementfrom.operatorsimportOperatorTypefrom.sqltypesimport_resolve_value_to_typeas_resolve_value_to_typefrom.sqltypesimportBOOLEANTYPEasBOOLEANTYPE# noqa: F401from.sqltypesimportINDEXABLEasINDEXABLE# noqa: F401from.sqltypesimportINTEGERTYPEasINTEGERTYPE# noqa: F401from.sqltypesimportMATCHTYPEasMATCHTYPE# noqa: F401from.sqltypesimportNULLTYPEasNULLTYPEfrom.sqltypesimportNUMERICTYPEasNUMERICTYPE# noqa: F401from.sqltypesimportSTRINGTYPEasSTRINGTYPE# noqa: F401from.sqltypesimportTABLEVALUEasTABLEVALUE# noqa: F401from..engine.interfacesimportDialectfrom..util.typingimportGenericProtocol_T=TypeVar("_T",bound=Any)_T_co=TypeVar("_T_co",bound=Any,covariant=True)_T_con=TypeVar("_T_con",bound=Any,contravariant=True)_O=TypeVar("_O",bound=object)_TE=TypeVar("_TE",bound="TypeEngine[Any]")_CT=TypeVar("_CT",bound=Any)_RT=TypeVar("_RT",bound=Any)_MatchedOnType=Union["GenericProtocol[Any]",TypeAliasType,NewType,Type[Any]]class_NoValueInList(Enum):NO_VALUE_IN_LIST=0"""indicates we are trying to determine the type of an expression against an empty list."""_NO_VALUE_IN_LIST=_NoValueInList.NO_VALUE_IN_LISTclass_LiteralProcessorType(Protocol[_T_co]):def__call__(self,value:Any)->str:...class_BindProcessorType(Protocol[_T_con]):def__call__(self,value:Optional[_T_con])->Any:...class_ResultProcessorType(Protocol[_T_co]):def__call__(self,value:Any)->Optional[_T_co]:...class_SentinelProcessorType(Protocol[_T_co]):def__call__(self,value:Any)->Optional[_T_co]:...class_BaseTypeMemoDict(TypedDict):impl:TypeEngine[Any]result:Dict[Any,Optional[_ResultProcessorType[Any]]]class_TypeMemoDict(_BaseTypeMemoDict,total=False):literal:Optional[_LiteralProcessorType[Any]]bind:Optional[_BindProcessorType[Any]]sentinel:Optional[_SentinelProcessorType[Any]]custom:Dict[Any,object]class_ComparatorFactory(Protocol[_T]):def__call__(self,expr:ColumnElement[_T])->TypeEngine.Comparator[_T]:...classTypeEngine(Visitable,Generic[_T]):"""The ultimate base class for all SQL datatypes. Common subclasses of :class:`.TypeEngine` include :class:`.String`, :class:`.Integer`, and :class:`.Boolean`. For an overview of the SQLAlchemy typing system, see :ref:`types_toplevel`. .. seealso:: :ref:`types_toplevel` """_sqla_type=True_isnull=False_is_tuple_type=False_is_table_value=False_is_array=False_is_type_decorator=Falserender_bind_cast=False"""Render bind casts for :attr:`.BindTyping.RENDER_CASTS` mode. If True, this type (usually a dialect level impl type) signals to the compiler that a cast should be rendered around a bound parameter for this type. .. versionadded:: 2.0 .. seealso:: :class:`.BindTyping` """render_literal_cast=False"""render casts when rendering a value as an inline literal, e.g. with :meth:`.TypeEngine.literal_processor`. .. versionadded:: 2.0 """classComparator(ColumnOperators,Generic[_CT],):"""Base class for custom comparison operations defined at the type level. See :attr:`.TypeEngine.comparator_factory`. """__slots__="expr","type"expr:ColumnElement[_CT]type:TypeEngine[_CT]def__clause_element__(self)->ColumnElement[_CT]:returnself.exprdef__init__(self,expr:ColumnElement[_CT]):self.expr=exprself.type=expr.typedef__reduce__(self)->Any:returnself.__class__,(self.expr,)@overloaddefoperate(self,op:OperatorType,*other:Any,result_type:Type[TypeEngine[_RT]],**kwargs:Any,)->ColumnElement[_RT]:...@overloaddefoperate(self,op:OperatorType,*other:Any,**kwargs:Any)->ColumnElement[_CT]:...@util.preload_module("sqlalchemy.sql.default_comparator")defoperate(self,op:OperatorType,*other:Any,**kwargs:Any)->ColumnElement[Any]:default_comparator=util.preloaded.sql_default_comparatorop_fn,addtl_kw=default_comparator.operator_lookup[op.__name__]ifkwargs:addtl_kw=addtl_kw.union(kwargs)returnop_fn(self.expr,op,*other,**addtl_kw)@util.preload_module("sqlalchemy.sql.default_comparator")defreverse_operate(self,op:OperatorType,other:Any,**kwargs:Any)->ColumnElement[_CT]:default_comparator=util.preloaded.sql_default_comparatorop_fn,addtl_kw=default_comparator.operator_lookup[op.__name__]ifkwargs:addtl_kw=addtl_kw.union(kwargs)returnop_fn(self.expr,op,other,reverse=True,**addtl_kw)def_adapt_expression(self,op:OperatorType,other_comparator:TypeEngine.Comparator[Any],)->Tuple[OperatorType,TypeEngine[Any]]:"""evaluate the return type of <self> <op> <othertype>, and apply any adaptations to the given operator. This method determines the type of a resulting binary expression given two source types and an operator. For example, two :class:`_schema.Column` objects, both of the type :class:`.Integer`, will produce a :class:`.BinaryExpression` that also has the type :class:`.Integer` when compared via the addition (``+``) operator. However, using the addition operator with an :class:`.Integer` and a :class:`.Date` object will produce a :class:`.Date`, assuming "days delta" behavior by the database (in reality, most databases other than PostgreSQL don't accept this particular operation). The method returns a tuple of the form <operator>, <type>. The resulting operator and type will be those applied to the resulting :class:`.BinaryExpression` as the final operator and the right-hand side of the expression. Note that only a subset of operators make usage of :meth:`._adapt_expression`, including math operators and user-defined operators, but not boolean comparison or special SQL keywords like MATCH or BETWEEN. """returnop,self.typehashable=True"""Flag, if False, means values from this type aren't hashable. Used by the ORM when uniquing result lists. """comparator_factory:_ComparatorFactory[Any]=Comparator"""A :class:`.TypeEngine.Comparator` class which will apply to operations performed by owning :class:`_expression.ColumnElement` objects. The :attr:`.comparator_factory` attribute is a hook consulted by the core expression system when column and SQL expression operations are performed. When a :class:`.TypeEngine.Comparator` class is associated with this attribute, it allows custom re-definition of all existing operators, as well as definition of new operators. Existing operators include those provided by Python operator overloading such as :meth:`.operators.ColumnOperators.__add__` and :meth:`.operators.ColumnOperators.__eq__`, those provided as standard attributes of :class:`.operators.ColumnOperators` such as :meth:`.operators.ColumnOperators.like` and :meth:`.operators.ColumnOperators.in_`. Rudimentary usage of this hook is allowed through simple subclassing of existing types, or alternatively by using :class:`.TypeDecorator`. See the documentation section :ref:`types_operators` for examples. """sort_key_function:Optional[Callable[[Any],Any]]=None"""A sorting function that can be passed as the key to sorted. The default value of ``None`` indicates that the values stored by this type are self-sorting. .. versionadded:: 1.3.8 """should_evaluate_none:bool=False"""If True, the Python constant ``None`` is considered to be handled explicitly by this type. The ORM uses this flag to indicate that a positive value of ``None`` is passed to the column in an INSERT statement, rather than omitting the column from the INSERT statement which has the effect of firing off column-level defaults. It also allows types which have special behavior for Python None, such as a JSON type, to indicate that they'd like to handle the None value explicitly. To set this flag on an existing type, use the :meth:`.TypeEngine.evaluates_none` method. .. seealso:: :meth:`.TypeEngine.evaluates_none` """_variant_mapping:util.immutabledict[str,TypeEngine[Any]]=(util.EMPTY_DICT)defevaluates_none(self)->Self:"""Return a copy of this type which has the :attr:`.should_evaluate_none` flag set to True. E.g.:: Table( "some_table", metadata, Column( String(50).evaluates_none(), nullable=True, server_default="no value", ), ) The ORM uses this flag to indicate that a positive value of ``None`` is passed to the column in an INSERT statement, rather than omitting the column from the INSERT statement which has the effect of firing off column-level defaults. It also allows for types which have special behavior associated with the Python None value to indicate that the value doesn't necessarily translate into SQL NULL; a prime example of this is a JSON type which may wish to persist the JSON value ``'null'``. In all cases, the actual NULL SQL value can be always be persisted in any column by using the :obj:`_expression.null` SQL construct in an INSERT statement or associated with an ORM-mapped attribute. .. note:: The "evaluates none" flag does **not** apply to a value of ``None`` passed to :paramref:`_schema.Column.default` or :paramref:`_schema.Column.server_default`; in these cases, ``None`` still means "no default". .. seealso:: :ref:`session_forcing_null` - in the ORM documentation :paramref:`.postgresql.JSON.none_as_null` - PostgreSQL JSON interaction with this flag. :attr:`.TypeEngine.should_evaluate_none` - class-level flag """typ=self.copy()typ.should_evaluate_none=Truereturntypdefcopy(self,**kw:Any)->Self:returnself.adapt(self.__class__)defcopy_value(self,value:Any)->Any:returnvaluedefliteral_processor(self,dialect:Dialect)->Optional[_LiteralProcessorType[_T]]:"""Return a conversion function for processing literal values that are to be rendered directly without using binds. This function is used when the compiler makes use of the "literal_binds" flag, typically used in DDL generation as well as in certain scenarios where backends don't accept bound parameters. Returns a callable which will receive a literal Python value as the sole positional argument and will return a string representation to be rendered in a SQL statement. .. note:: This method is only called relative to a **dialect specific type object**, which is often **private to a dialect in use** and is not the same type object as the public facing one, which means it's not feasible to subclass a :class:`.types.TypeEngine` class in order to provide an alternate :meth:`_types.TypeEngine.literal_processor` method, unless subclassing the :class:`_types.UserDefinedType` class explicitly. To provide alternate behavior for :meth:`_types.TypeEngine.literal_processor`, implement a :class:`_types.TypeDecorator` class and provide an implementation of :meth:`_types.TypeDecorator.process_literal_param`. .. seealso:: :ref:`types_typedecorator` """returnNonedefbind_processor(self,dialect:Dialect)->Optional[_BindProcessorType[_T]]:"""Return a conversion function for processing bind values. Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API. If processing is not necessary, the method should return ``None``. .. note:: This method is only called relative to a **dialect specific type object**, which is often **private to a dialect in use** and is not the same type object as the public facing one, which means it's not feasible to subclass a :class:`.types.TypeEngine` class in order to provide an alternate :meth:`_types.TypeEngine.bind_processor` method, unless subclassing the :class:`_types.UserDefinedType` class explicitly. To provide alternate behavior for :meth:`_types.TypeEngine.bind_processor`, implement a :class:`_types.TypeDecorator` class and provide an implementation of :meth:`_types.TypeDecorator.process_bind_param`. .. seealso:: :ref:`types_typedecorator` :param dialect: Dialect instance in use. """returnNonedefresult_processor(self,dialect:Dialect,coltype:object)->Optional[_ResultProcessorType[_T]]:"""Return a conversion function for processing result row values. Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user. If processing is not necessary, the method should return ``None``. .. note:: This method is only called relative to a **dialect specific type object**, which is often **private to a dialect in use** and is not the same type object as the public facing one, which means it's not feasible to subclass a :class:`.types.TypeEngine` class in order to provide an alternate :meth:`_types.TypeEngine.result_processor` method, unless subclassing the :class:`_types.UserDefinedType` class explicitly. To provide alternate behavior for :meth:`_types.TypeEngine.result_processor`, implement a :class:`_types.TypeDecorator` class and provide an implementation of :meth:`_types.TypeDecorator.process_result_value`. .. seealso:: :ref:`types_typedecorator` :param dialect: Dialect instance in use. :param coltype: DBAPI coltype argument received in cursor.description. """returnNonedefcolumn_expression(self,colexpr:ColumnElement[_T])->Optional[ColumnElement[_T]]:"""Given a SELECT column expression, return a wrapping SQL expression. This is typically a SQL function that wraps a column expression as rendered in the columns clause of a SELECT statement. It is used for special data types that require columns to be wrapped in some special database function in order to coerce the value before being sent back to the application. It is the SQL analogue of the :meth:`.TypeEngine.result_processor` method. This method is called during the **SQL compilation** phase of a statement, when rendering a SQL string. It is **not** called against specific values. .. note:: This method is only called relative to a **dialect specific type object**, which is often **private to a dialect in use** and is not the same type object as the public facing one, which means it's not feasible to subclass a :class:`.types.TypeEngine` class in order to provide an alternate :meth:`_types.TypeEngine.column_expression` method, unless subclassing the :class:`_types.UserDefinedType` class explicitly. To provide alternate behavior for :meth:`_types.TypeEngine.column_expression`, implement a :class:`_types.TypeDecorator` class and provide an implementation of :meth:`_types.TypeDecorator.column_expression`. .. seealso:: :ref:`types_typedecorator` .. seealso:: :ref:`types_sql_value_processing` """returnNone@util.memoized_propertydef_has_column_expression(self)->bool:"""memoized boolean, check if column_expression is implemented. Allows the method to be skipped for the vast majority of expression types that don't use this feature. """return(self.__class__.column_expression.__code__isnotTypeEngine.column_expression.__code__)defbind_expression(self,bindvalue:BindParameter[_T])->Optional[ColumnElement[_T]]:"""Given a bind value (i.e. a :class:`.BindParameter` instance), return a SQL expression in its place. This is typically a SQL function that wraps the existing bound parameter within the statement. It is used for special data types that require literals being wrapped in some special database function in order to coerce an application-level value into a database-specific format. It is the SQL analogue of the :meth:`.TypeEngine.bind_processor` method. This method is called during the **SQL compilation** phase of a statement, when rendering a SQL string. It is **not** called against specific values. Note that this method, when implemented, should always return the exact same structure, without any conditional logic, as it may be used in an executemany() call against an arbitrary number of bound parameter sets. .. note:: This method is only called relative to a **dialect specific type object**, which is often **private to a dialect in use** and is not the same type object as the public facing one, which means it's not feasible to subclass a :class:`.types.TypeEngine` class in order to provide an alternate :meth:`_types.TypeEngine.bind_expression` method, unless subclassing the :class:`_types.UserDefinedType` class explicitly. To provide alternate behavior for :meth:`_types.TypeEngine.bind_expression`, implement a :class:`_types.TypeDecorator` class and provide an implementation of :meth:`_types.TypeDecorator.bind_expression`. .. seealso:: :ref:`types_typedecorator` .. seealso:: :ref:`types_sql_value_processing` """returnNone@util.memoized_propertydef_has_bind_expression(self)->bool:"""memoized boolean, check if bind_expression is implemented. Allows the method to be skipped for the vast majority of expression types that don't use this feature. """returnutil.method_is_overridden(self,TypeEngine.bind_expression)@staticmethoddef_to_instance(cls_or_self:Union[Type[_TE],_TE])->_TE:returnto_instance(cls_or_self)defcompare_values(self,x:Any,y:Any)->bool:"""Compare two values for equality."""returnx==y# type: ignore[no-any-return]defget_dbapi_type(self,dbapi:ModuleType)->Optional[Any]:"""Return the corresponding type object from the underlying DB-API, if any. This can be useful for calling ``setinputsizes()``, for example. """returnNone@propertydefpython_type(self)->Type[Any]:"""Return the Python type object expected to be returned by instances of this type, if known. Basically, for those types which enforce a return type, or are known across the board to do such for all common DBAPIs (like ``int`` for example), will return that type. If a return type is not defined, raises ``NotImplementedError``. Note that any type also accommodates NULL in SQL which means you can also get back ``None`` from any type in practice. """raiseNotImplementedError()defwith_variant(self,type_:_TypeEngineArgument[Any],*dialect_names:str,)->Self:r"""Produce a copy of this type object that will utilize the given type when applied to the dialect of the given name. e.g.:: from sqlalchemy.types import String from sqlalchemy.dialects import mysql string_type = String() string_type = string_type.with_variant( mysql.VARCHAR(collation="foo"), "mysql", "mariadb" ) The variant mapping indicates that when this type is interpreted by a specific dialect, it will instead be transmuted into the given type, rather than using the primary type. .. versionchanged:: 2.0 the :meth:`_types.TypeEngine.with_variant` method now works with a :class:`_types.TypeEngine` object "in place", returning a copy of the original type rather than returning a wrapping object; the ``Variant`` class is no longer used. :param type\_: a :class:`.TypeEngine` that will be selected as a variant from the originating type, when a dialect of the given name is in use. :param \*dialect_names: one or more base names of the dialect which uses this type. (i.e. ``'postgresql'``, ``'mysql'``, etc.) .. versionchanged:: 2.0 multiple dialect names can be specified for one variant. .. seealso:: :ref:`types_with_variant` - illustrates the use of :meth:`_types.TypeEngine.with_variant`. """ifnotdialect_names:raiseexc.ArgumentError("At least one dialect name is required")fordialect_nameindialect_names:ifdialect_nameinself._variant_mapping:raiseexc.ArgumentError(f"Dialect {dialect_name!r} is already present in "f"the mapping for this {self!r}")new_type=self.copy()type_=to_instance(type_)iftype_._variant_mapping:raiseexc.ArgumentError("can't pass a type that already has variants as a ""dialect-level type to with_variant()")new_type._variant_mapping=self._variant_mapping.union({dialect_name:type_fordialect_nameindialect_names})returnnew_typedef_resolve_for_literal(self,value:Any)->Self:"""adjust this type given a literal Python value that will be stored in a bound parameter. Used exclusively by _resolve_value_to_type(). .. versionadded:: 1.4.30 or 2.0 TODO: this should be part of public API .. seealso:: :meth:`.TypeEngine._resolve_for_python_type` """returnselfdef_resolve_for_python_type(self,python_type:Type[Any],matched_on:_MatchedOnType,matched_on_flattened:Type[Any],)->Optional[Self]:"""given a Python type (e.g. ``int``, ``str``, etc. ) return an instance of this :class:`.TypeEngine` that's appropriate for this type. An additional argument ``matched_on`` is passed, which indicates an entry from the ``__mro__`` of the given ``python_type`` that more specifically matches how the caller located this :class:`.TypeEngine` object. Such as, if a lookup of some kind links the ``int`` Python type to the :class:`.Integer` SQL type, and the original object was some custom subclass of ``int`` such as ``MyInt(int)``, the arguments passed would be ``(MyInt, int)``. If the given Python type does not correspond to this :class:`.TypeEngine`, or the Python type is otherwise ambiguous, the method should return None. For simple cases, the method checks that the ``python_type`` and ``matched_on`` types are the same (i.e. not a subclass), and returns self; for all other cases, it returns ``None``. The initial use case here is for the ORM to link user-defined Python standard library ``enum.Enum`` classes to the SQLAlchemy :class:`.Enum` SQL type when constructing ORM Declarative mappings. :param python_type: the Python type we want to use :param matched_on: the Python type that led us to choose this particular :class:`.TypeEngine` class, which would be a supertype of ``python_type``. By default, the request is rejected if ``python_type`` doesn't match ``matched_on`` (None is returned). .. versionadded:: 2.0.0b4 TODO: this should be part of public API .. seealso:: :meth:`.TypeEngine._resolve_for_literal` """ifpython_typeisnotmatched_on_flattened:returnNonereturnselfdef_with_collation(self,collation:str)->Self:"""set up error handling for the collate expression"""raiseNotImplementedError("this datatype does not support collation")@util.ro_memoized_propertydef_type_affinity(self)->Optional[Type[TypeEngine[_T]]]:"""Return a rudimental 'affinity' value expressing the general class of type."""typ=Nonefortinself.__class__.__mro__:iftisTypeEngineorTypeEngineMixinint.__bases__:returntypelifissubclass(t,TypeEngine):typ=telse:returnself.__class__@util.ro_memoized_propertydef_generic_type_affinity(self,)->Type[TypeEngine[_T]]:best_camelcase=Nonebest_uppercase=Noneifnotisinstance(self,TypeEngine):returnself.__class__fortinself.__class__.__mro__:if(t.__module__in("sqlalchemy.sql.sqltypes","sqlalchemy.sql.type_api",)andissubclass(t,TypeEngine)andTypeEngineMixinnotint.__bases__andtnotin(TypeEngine,TypeEngineMixin)andt.__name__[0]!="_"):ift.__name__.isupper()andnotbest_uppercase:best_uppercase=telifnott.__name__.isupper()andnotbest_camelcase:best_camelcase=treturn(best_camelcaseorbest_uppercaseorcast("Type[TypeEngine[_T]]",NULLTYPE.__class__))defas_generic(self,allow_nulltype:bool=False)->TypeEngine[_T]:""" Return an instance of the generic type corresponding to this type using heuristic rule. The method may be overridden if this heuristic rule is not sufficient. >>> from sqlalchemy.dialects.mysql import INTEGER >>> INTEGER(display_width=4).as_generic() Integer() >>> from sqlalchemy.dialects.mysql import NVARCHAR >>> NVARCHAR(length=100).as_generic() Unicode(length=100) .. versionadded:: 1.4.0b2 .. seealso:: :ref:`metadata_reflection_dbagnostic_types` - describes the use of :meth:`_types.TypeEngine.as_generic` in conjunction with the :meth:`_sql.DDLEvents.column_reflect` event, which is its intended use. """if(notallow_nulltypeandself._generic_type_affinity==NULLTYPE.__class__):raiseNotImplementedError("Default TypeEngine.as_generic() ""heuristic method was unsuccessful for {}. A custom ""as_generic() method must be implemented for this ""type class.".format(self.__class__.__module__+"."+self.__class__.__name__))returnutil.constructor_copy(self,self._generic_type_affinity)defdialect_impl(self,dialect:Dialect)->TypeEngine[_T]:"""Return a dialect-specific implementation for this :class:`.TypeEngine`. """try:tm=dialect._type_memos[self]exceptKeyError:passelse:returntm["impl"]returnself._dialect_info(dialect)["impl"]def_unwrapped_dialect_impl(self,dialect:Dialect)->TypeEngine[_T]:"""Return the 'unwrapped' dialect impl for this type. For a type that applies wrapping logic (e.g. TypeDecorator), give us the real, actual dialect-level type that is used. This is used by TypeDecorator itself as well at least one case where dialects need to check that a particular specific dialect-level type is in use, within the :meth:`.DefaultDialect.set_input_sizes` method. """returnself.dialect_impl(dialect)def_cached_literal_processor(self,dialect:Dialect)->Optional[_LiteralProcessorType[_T]]:"""Return a dialect-specific literal processor for this type."""try:returndialect._type_memos[self]["literal"]exceptKeyError:pass# avoid KeyError context coming into literal_processor() function# raisesd=self._dialect_info(dialect)d["literal"]=lp=d["impl"].literal_processor(dialect)returnlpdef_cached_bind_processor(self,dialect:Dialect)->Optional[_BindProcessorType[_T]]:"""Return a dialect-specific bind processor for this type."""try:returndialect._type_memos[self]["bind"]exceptKeyError:pass# avoid KeyError context coming into bind_processor() function# raisesd=self._dialect_info(dialect)d["bind"]=bp=d["impl"].bind_processor(dialect)returnbpdef_cached_result_processor(self,dialect:Dialect,coltype:Any)->Optional[_ResultProcessorType[_T]]:"""Return a dialect-specific result processor for this type."""try:returndialect._type_memos[self]["result"][coltype]exceptKeyError:pass# avoid KeyError context coming into result_processor() function# raisesd=self._dialect_info(dialect)# key assumption: DBAPI type codes are# constants. Else this dictionary would# grow unbounded.rp=d["impl"].result_processor(dialect,coltype)d["result"][coltype]=rpreturnrpdef_cached_custom_processor(self,dialect:Dialect,key:str,fn:Callable[[TypeEngine[_T]],_O])->_O:"""return a dialect-specific processing object for custom purposes. The cx_Oracle dialect uses this at the moment. """try:returncast(_O,dialect._type_memos[self]["custom"][key])exceptKeyError:pass# avoid KeyError context coming into fn() function# raisesd=self._dialect_info(dialect)impl=d["impl"]custom_dict=d.setdefault("custom",{})custom_dict[key]=result=fn(impl)returnresultdef_dialect_info(self,dialect:Dialect)->_TypeMemoDict:"""Return a dialect-specific registry which caches a dialect-specific implementation, bind processing function, and one or more result processing functions."""ifselfindialect._type_memos:returndialect._type_memos[self]else:impl=self._gen_dialect_impl(dialect)ifimplisself:impl=self.adapt(type(self))# this can't be self, else we create a cycleassertimplisnotselfd:_TypeMemoDict={"impl":impl,"result":{}}dialect._type_memos[self]=dreturnddef_gen_dialect_impl(self,dialect:Dialect)->TypeEngine[Any]:ifdialect.nameinself._variant_mapping:returnself._variant_mapping[dialect.name]._gen_dialect_impl(dialect)else:returndialect.type_descriptor(self)@util.memoized_propertydef_static_cache_key(self,)->Union[CacheConst,Tuple[Any,...]]:names=util.get_cls_kwargs(self.__class__)return(self.__class__,)+tuple((k,(self.__dict__[k]._static_cache_keyifisinstance(self.__dict__[k],TypeEngine)elseself.__dict__[k]),)forkinnamesifkinself.__dict__andnotk.startswith("_")andself.__dict__[k]isnotNone)@overloaddefadapt(self,cls:Type[_TE],**kw:Any)->_TE:...@overloaddefadapt(self,cls:Type[TypeEngineMixin],**kw:Any)->TypeEngine[Any]:...defadapt(self,cls:Type[Union[TypeEngine[Any],TypeEngineMixin]],**kw:Any)->TypeEngine[Any]:"""Produce an "adapted" form of this type, given an "impl" class to work with. This method is used internally to associate generic types with "implementation" types that are specific to a particular dialect. """typ=util.constructor_copy(self,cast(Type[TypeEngine[Any]],cls),**kw)typ._variant_mapping=self._variant_mappingreturntypdefcoerce_compared_value(self,op:Optional[OperatorType],value:Any)->TypeEngine[Any]:"""Suggest a type for a 'coerced' Python value in an expression. Given an operator and value, gives the type a chance to return a type which the value should be coerced into. The default behavior here is conservative; if the right-hand side is already coerced into a SQL type based on its Python type, it is usually left alone. End-user functionality extension here should generally be via :class:`.TypeDecorator`, which provides more liberal behavior in that it defaults to coercing the other side of the expression into this type, thus applying special Python conversions above and beyond those needed by the DBAPI to both ides. It also provides the public method :meth:`.TypeDecorator.coerce_compared_value` which is intended for end-user customization of this behavior. """_coerced_type=_resolve_value_to_type(value)if(_coerced_typeisNULLTYPEor_coerced_type._type_affinityisself._type_affinity):returnselfelse:return_coerced_typedef_compare_type_affinity(self,other:TypeEngine[Any])->bool:returnself._type_affinityisother._type_affinitydefcompile(self,dialect:Optional[Dialect]=None)->str:"""Produce a string-compiled form of this :class:`.TypeEngine`. When called with no arguments, uses a "default" dialect to produce a string result. :param dialect: a :class:`.Dialect` instance. """# arg, return value is inconsistent with# ClauseElement.compile()....this is a mistake.ifdialectisNone:dialect=self._default_dialect()returndialect.type_compiler_instance.process(self)@util.preload_module("sqlalchemy.engine.default")def_default_dialect(self)->Dialect:default=util.preloaded.engine_default# dmypy / mypy seems to sporadically keep thinking this line is# returning Any, which seems to be caused by the @deprecated_params# decorator on the DefaultDialect constructorreturndefault.StrCompileDialect()# type: ignoredef__str__(self)->str:returnstr(self.compile())def__repr__(self)->str:returnutil.generic_repr(self)classTypeEngineMixin:"""classes which subclass this can act as "mixin" classes for TypeEngine."""__slots__=()ifTYPE_CHECKING:@util.memoized_propertydef_static_cache_key(self,)->Union[CacheConst,Tuple[Any,...]]:...@overloaddefadapt(self,cls:Type[_TE],**kw:Any)->_TE:...@overloaddefadapt(self,cls:Type[TypeEngineMixin],**kw:Any)->TypeEngine[Any]:...defadapt(self,cls:Type[Union[TypeEngine[Any],TypeEngineMixin]],**kw:Any)->TypeEngine[Any]:...defdialect_impl(self,dialect:Dialect)->TypeEngine[Any]:...classExternalType(TypeEngineMixin):"""mixin that defines attributes and behaviors specific to third-party datatypes. "Third party" refers to datatypes that are defined outside the scope of SQLAlchemy within either end-user application code or within external extensions to SQLAlchemy. Subclasses currently include :class:`.TypeDecorator` and :class:`.UserDefinedType`. .. versionadded:: 1.4.28 """cache_ok:Optional[bool]=None'''Indicate if statements using this :class:`.ExternalType` are "safe to cache". The default value ``None`` will emit a warning and then not allow caching of a statement which includes this type. Set to ``False`` to disable statements using this type from being cached at all without a warning. When set to ``True``, the object's class and selected elements from its state will be used as part of the cache key. For example, using a :class:`.TypeDecorator`:: class MyType(TypeDecorator): impl = String cache_ok = True def __init__(self, choices): self.choices = tuple(choices) self.internal_only = True The cache key for the above type would be equivalent to:: >>> MyType(["a", "b", "c"])._static_cache_key (<class '__main__.MyType'>, ('choices', ('a', 'b', 'c'))) The caching scheme will extract attributes from the type that correspond to the names of parameters in the ``__init__()`` method. Above, the "choices" attribute becomes part of the cache key but "internal_only" does not, because there is no parameter named "internal_only". The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value. To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made "cacheable" by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:: class LookupType(UserDefinedType): """a custom type that accepts a dictionary as a parameter. this is the non-cacheable version, as "self.lookup" is not hashable. """ def __init__(self, lookup): self.lookup = lookup def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): ... # works with "self.lookup" ... Where "lookup" is a dictionary. The type will not be able to generate a cache key:: >>> type_ = LookupType({"a": 10, "b": 20}) >>> type_._static_cache_key <stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not produce a cache key because the ``cache_ok`` flag is not set to True. Set this flag to True if this type object's state is safe to use in a cache key, or False to disable this warning. symbol('no_cache') If we **did** set up such a cache key, it wouldn't be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a "cache dictionary" such as SQLAlchemy's statement cache, since Python dictionaries aren't hashable:: >>> # set cache_ok = True >>> type_.cache_ok = True >>> # this is the cache key it would generate >>> key = type_._static_cache_key >>> key (<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20})) >>> # however this key is not hashable, will fail when used with >>> # SQLAlchemy statement cache >>> some_cache = {key: "some sql value"} Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unhashable type: 'dict' The type may be made cacheable by assigning a sorted tuple of tuples to the ".lookup" attribute:: class LookupType(UserDefinedType): """a custom type that accepts a dictionary as a parameter. The dictionary is stored both as itself in a private variable, and published in a public variable as a sorted tuple of tuples, which is hashable and will also return the same value for any two equivalent dictionaries. Note it assumes the keys and values of the dictionary are themselves hashable. """ cache_ok = True def __init__(self, lookup): self._lookup = lookup # assume keys/values of "lookup" are hashable; otherwise # they would also need to be converted in some way here self.lookup = tuple((key, lookup[key]) for key in sorted(lookup)) def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): ... # works with "self._lookup" ... Where above, the cache key for ``LookupType({"a": 10, "b": 20})`` will be:: >>> LookupType({"a": 10, "b": 20})._static_cache_key (<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20)))) .. versionadded:: 1.4.14 - added the ``cache_ok`` flag to allow some configurability of caching for :class:`.TypeDecorator` classes. .. versionadded:: 1.4.28 - added the :class:`.ExternalType` mixin which generalizes the ``cache_ok`` flag to both the :class:`.TypeDecorator` and :class:`.UserDefinedType` classes. .. seealso:: :ref:`sql_caching` '''# noqa: E501@util.non_memoized_propertydef_static_cache_key(self,)->Union[CacheConst,Tuple[Any,...]]:cache_ok=self.__class__.__dict__.get("cache_ok",None)ifcache_okisNone:forsubtypeinself.__class__.__mro__:ifExternalTypeinsubtype.__bases__:breakelse:subtype=self.__class__.__mro__[1]util.warn("%s%r will not produce a cache key because ""the ``cache_ok`` attribute is not set to True. This can ""have significant performance implications including some ""performance degradations in comparison to prior SQLAlchemy ""versions. Set this attribute to True if this type object's ""state is safe to use in a cache key, or False to ""disable this warning."%(subtype.__name__,self),code="cprf",)elifcache_okisTrue:returnsuper()._static_cache_keyreturnNO_CACHEclassUserDefinedType(ExternalType,TypeEngineMixin,TypeEngine[_T],util.EnsureKWArg):"""Base for user defined types. This should be the base of new types. Note that for most cases, :class:`.TypeDecorator` is probably more appropriate:: import sqlalchemy.types as types class MyType(types.UserDefinedType): cache_ok = True def __init__(self, precision=8): self.precision = precision def get_col_spec(self, **kw): return "MYTYPE(%s)" % self.precision def bind_processor(self, dialect): def process(value): return value return process def result_processor(self, dialect, coltype): def process(value): return value return process Once the type is made, it's immediately usable:: table = Table( "foo", metadata_obj, Column("id", Integer, primary_key=True), Column("data", MyType(16)), ) The ``get_col_spec()`` method will in most cases receive a keyword argument ``type_expression`` which refers to the owning expression of the type as being compiled, such as a :class:`_schema.Column` or :func:`.cast` construct. This keyword is only sent if the method accepts keyword arguments (e.g. ``**kw``) in its argument signature; introspection is used to check for this in order to support legacy forms of this function. The :attr:`.UserDefinedType.cache_ok` class-level flag indicates if this custom :class:`.UserDefinedType` is safe to be used as part of a cache key. This flag defaults to ``None`` which will initially generate a warning when the SQL compiler attempts to generate a cache key for a statement that uses this type. If the :class:`.UserDefinedType` is not guaranteed to produce the same bind/result behavior and SQL generation every time, this flag should be set to ``False``; otherwise if the class produces the same behavior each time, it may be set to ``True``. See :attr:`.UserDefinedType.cache_ok` for further notes on how this works. .. versionadded:: 1.4.28 Generalized the :attr:`.ExternalType.cache_ok` flag so that it is available for both :class:`.TypeDecorator` as well as :class:`.UserDefinedType`. """__visit_name__="user_defined"ensure_kwarg="get_col_spec"defcoerce_compared_value(self,op:Optional[OperatorType],value:Any)->TypeEngine[Any]:"""Suggest a type for a 'coerced' Python value in an expression. Default behavior for :class:`.UserDefinedType` is the same as that of :class:`.TypeDecorator`; by default it returns ``self``, assuming the compared value should be coerced into the same type as this one. See :meth:`.TypeDecorator.coerce_compared_value` for more detail. """returnselfifTYPE_CHECKING:defget_col_spec(self,**kw:Any)->str:...classEmulated(TypeEngineMixin):"""Mixin for base types that emulate the behavior of a DB-native type. An :class:`.Emulated` type will use an available database type in conjunction with Python-side routines and/or database constraints in order to approximate the behavior of a database type that is provided natively by some backends. When a native-providing backend is in use, the native version of the type is used. This native version should include the :class:`.NativeForEmulated` mixin to allow it to be distinguished from :class:`.Emulated`. Current examples of :class:`.Emulated` are: :class:`.Interval`, :class:`.Enum`, :class:`.Boolean`. .. versionadded:: 1.2.0b3 """native:booldefadapt_to_emulated(self,impltype:Type[Union[TypeEngine[Any],TypeEngineMixin]],**kw:Any,)->TypeEngine[Any]:"""Given an impl class, adapt this type to the impl assuming "emulated". The impl should also be an "emulated" version of this type, most likely the same class as this type itself. e.g.: sqltypes.Enum adapts to the Enum class. """returnsuper().adapt(impltype,**kw)@overloaddefadapt(self,cls:Type[_TE],**kw:Any)->_TE:...@overloaddefadapt(self,cls:Type[TypeEngineMixin],**kw:Any)->TypeEngine[Any]:...defadapt(self,cls:Type[Union[TypeEngine[Any],TypeEngineMixin]],**kw:Any)->TypeEngine[Any]:if_is_native_for_emulated(cls):ifself.native:# native support requested, dialect gave us a native# implementor, pass control over to itreturncls.adapt_emulated_to_native(self,**kw)else:# non-native support, let the native implementor# decide also, at the moment this is just to help debugging# as only the default logic is implemented.returncls.adapt_native_to_emulated(self,**kw)else:# this would be, both classes are Enum, or both classes# are postgresql.ENUMifissubclass(cls,self.__class__):returnself.adapt_to_emulated(cls,**kw)else:returnsuper().adapt(cls,**kw)def_is_native_for_emulated(typ:Type[Union[TypeEngine[Any],TypeEngineMixin]],)->TypeGuard[Type[NativeForEmulated]]:returnhasattr(typ,"adapt_emulated_to_native")classNativeForEmulated(TypeEngineMixin):"""Indicates DB-native types supported by an :class:`.Emulated` type. .. versionadded:: 1.2.0b3 """@classmethoddefadapt_native_to_emulated(cls,impl:Union[TypeEngine[Any],TypeEngineMixin],**kw:Any,)->TypeEngine[Any]:"""Given an impl, adapt this type's class to the impl assuming "emulated". """impltype=impl.__class__returnimpl.adapt(impltype,**kw)@classmethoddefadapt_emulated_to_native(cls,impl:Union[TypeEngine[Any],TypeEngineMixin],**kw:Any,)->TypeEngine[Any]:"""Given an impl, adapt this type's class to the impl assuming "native". The impl will be an :class:`.Emulated` class but not a :class:`.NativeForEmulated`. e.g.: postgresql.ENUM produces a type given an Enum instance. """# dmypy seems to crash on thisreturncls(**kw)# type: ignore# dmypy seems to crash with this, on repeated runs with changes# if TYPE_CHECKING:# def __init__(self, **kw: Any):# ...classTypeDecorator(SchemaEventTarget,ExternalType,TypeEngine[_T]):'''Allows the creation of types which add additional functionality to an existing type. This method is preferred to direct subclassing of SQLAlchemy's built-in types as it ensures that all required functionality of the underlying type is kept in place. Typical usage:: import sqlalchemy.types as types class MyType(types.TypeDecorator): """Prefixes Unicode values with "PREFIX:" on the way in and strips it off on the way out. """ impl = types.Unicode cache_ok = True def process_bind_param(self, value, dialect): return "PREFIX:" + value def process_result_value(self, value, dialect): return value[7:] def copy(self, **kw): return MyType(self.impl.length) The class-level ``impl`` attribute is required, and can reference any :class:`.TypeEngine` class. Alternatively, the :meth:`load_dialect_impl` method can be used to provide different type classes based on the dialect given; in this case, the ``impl`` variable can reference ``TypeEngine`` as a placeholder. The :attr:`.TypeDecorator.cache_ok` class-level flag indicates if this custom :class:`.TypeDecorator` is safe to be used as part of a cache key. This flag defaults to ``None`` which will initially generate a warning when the SQL compiler attempts to generate a cache key for a statement that uses this type. If the :class:`.TypeDecorator` is not guaranteed to produce the same bind/result behavior and SQL generation every time, this flag should be set to ``False``; otherwise if the class produces the same behavior each time, it may be set to ``True``. See :attr:`.TypeDecorator.cache_ok` for further notes on how this works. Types that receive a Python type that isn't similar to the ultimate type used may want to define the :meth:`TypeDecorator.coerce_compared_value` method. This is used to give the expression system a hint when coercing Python objects into bind parameters within expressions. Consider this expression:: mytable.c.somecol + datetime.date(2009, 5, 15) Above, if "somecol" is an ``Integer`` variant, it makes sense that we're doing date arithmetic, where above is usually interpreted by databases as adding a number of days to the given date. The expression system does the right thing by not attempting to coerce the "date()" value into an integer-oriented bind parameter. However, in the case of ``TypeDecorator``, we are usually changing an incoming Python type to something new - ``TypeDecorator`` by default will "coerce" the non-typed side to be the same type as itself. Such as below, we define an "epoch" type that stores a date value as an integer:: class MyEpochType(types.TypeDecorator): impl = types.Integer cache_ok = True epoch = datetime.date(1970, 1, 1) def process_bind_param(self, value, dialect): return (value - self.epoch).days def process_result_value(self, value, dialect): return self.epoch + timedelta(days=value) Our expression of ``somecol + date`` with the above type will coerce the "date" on the right side to also be treated as ``MyEpochType``. This behavior can be overridden via the :meth:`~TypeDecorator.coerce_compared_value` method, which returns a type that should be used for the value of the expression. Below we set it such that an integer value will be treated as an ``Integer``, and any other value is assumed to be a date and will be treated as a ``MyEpochType``:: def coerce_compared_value(self, op, value): if isinstance(value, int): return Integer() else: return self .. warning:: Note that the **behavior of coerce_compared_value is not inherited by default from that of the base type**. If the :class:`.TypeDecorator` is augmenting a type that requires special logic for certain types of operators, this method **must** be overridden. A key example is when decorating the :class:`_postgresql.JSON` and :class:`_postgresql.JSONB` types; the default rules of :meth:`.TypeEngine.coerce_compared_value` should be used in order to deal with operators like index operations:: from sqlalchemy import JSON from sqlalchemy import TypeDecorator class MyJsonType(TypeDecorator): impl = JSON cache_ok = True def coerce_compared_value(self, op, value): return self.impl.coerce_compared_value(op, value) Without the above step, index operations such as ``mycol['foo']`` will cause the index value ``'foo'`` to be JSON encoded. Similarly, when working with the :class:`.ARRAY` datatype, the type coercion for index operations (e.g. ``mycol[5]``) is also handled by :meth:`.TypeDecorator.coerce_compared_value`, where again a simple override is sufficient unless special rules are needed for particular operators:: from sqlalchemy import ARRAY from sqlalchemy import TypeDecorator class MyArrayType(TypeDecorator): impl = ARRAY cache_ok = True def coerce_compared_value(self, op, value): return self.impl.coerce_compared_value(op, value) '''__visit_name__="type_decorator"_is_type_decorator=True# this is that pattern I've used in a few places (Dialect.dbapi,# Dialect.type_compiler) where the "cls.attr" is a class to make something,# and "instance.attr" is an instance of that thing. It's such a nifty,# great pattern, and there is zero chance Python typing tools will ever be# OK with it. For TypeDecorator.impl, this is a highly public attribute so# we really can't change its behavior without a major deprecation routine.impl:Union[TypeEngine[Any],Type[TypeEngine[Any]]]# we are changing its behavior *slightly*, which is that we now consume# the instance level version from this memoized property instead, so you# can't reassign "impl" on an existing TypeDecorator that's already been# used (something one shouldn't do anyway) without also updating# impl_instance.@util.memoized_propertydefimpl_instance(self)->TypeEngine[Any]:returnself.impl# type: ignoredef__init__(self,*args:Any,**kwargs:Any):"""Construct a :class:`.TypeDecorator`. Arguments sent here are passed to the constructor of the class assigned to the ``impl`` class level attribute, assuming the ``impl`` is a callable, and the resulting object is assigned to the ``self.impl`` instance attribute (thus overriding the class attribute of the same name). If the class level ``impl`` is not a callable (the unusual case), it will be assigned to the same instance attribute 'as-is', ignoring those arguments passed to the constructor. Subclasses can override this to customize the generation of ``self.impl`` entirely. """ifnothasattr(self.__class__,"impl"):raiseAssertionError("TypeDecorator implementations ""require a class-level variable ""'impl' which refers to the class of ""type being decorated")self.impl=to_instance(self.__class__.impl,*args,**kwargs)coerce_to_is_types:Sequence[Type[Any]]=(type(None),)"""Specify those Python types which should be coerced at the expression level to "IS <constant>" when compared using ``==`` (and same for ``IS NOT`` in conjunction with ``!=``). For most SQLAlchemy types, this includes ``NoneType``, as well as ``bool``. :class:`.TypeDecorator` modifies this list to only include ``NoneType``, as typedecorator implementations that deal with boolean types are common. Custom :class:`.TypeDecorator` classes can override this attribute to return an empty tuple, in which case no values will be coerced to constants. """classComparator(TypeEngine.Comparator[_CT]):"""A :class:`.TypeEngine.Comparator` that is specific to :class:`.TypeDecorator`. User-defined :class:`.TypeDecorator` classes should not typically need to modify this. """__slots__=()defoperate(self,op:OperatorType,*other:Any,**kwargs:Any)->ColumnElement[_CT]:ifTYPE_CHECKING:assertisinstance(self.expr.type,TypeDecorator)kwargs["_python_is_types"]=self.expr.type.coerce_to_is_typesreturnsuper().operate(op,*other,**kwargs)defreverse_operate(self,op:OperatorType,other:Any,**kwargs:Any)->ColumnElement[_CT]:ifTYPE_CHECKING:assertisinstance(self.expr.type,TypeDecorator)kwargs["_python_is_types"]=self.expr.type.coerce_to_is_typesreturnsuper().reverse_operate(op,other,**kwargs)@staticmethoddef_reduce_td_comparator(impl:TypeEngine[Any],expr:ColumnElement[_T])->Any:returnTypeDecorator._create_td_comparator_type(impl)(expr)@staticmethoddef_create_td_comparator_type(impl:TypeEngine[Any],)->_ComparatorFactory[Any]:def__reduce__(self:TypeDecorator.Comparator[Any])->Any:return(TypeDecorator._reduce_td_comparator,(impl,self.expr))returntype("TDComparator",(TypeDecorator.Comparator,impl.comparator_factory),# type: ignore # noqa: E501{"__reduce__":__reduce__},)@propertydefcomparator_factory(# type: ignore # mypy properties bugself,)->_ComparatorFactory[Any]:ifTypeDecorator.Comparatorinself.impl.comparator_factory.__mro__:# type: ignore # noqa: E501returnself.impl_instance.comparator_factoryelse:# reconcile the Comparator class on the impl with that# of TypeDecorator.# the use of multiple staticmethods is to support repeated# pickling of the Comparator itselfreturnTypeDecorator._create_td_comparator_type(self.impl_instance)def_copy_with_check(self)->Self:tt=self.copy()ifnotisinstance(tt,self.__class__):raiseAssertionError("Type object %s does not properly ""implement the copy() method, it must ""return an object of type %s"%(self,self.__class__))returnttdef_gen_dialect_impl(self,dialect:Dialect)->TypeEngine[_T]:ifdialect.nameinself._variant_mapping:adapted=dialect.type_descriptor(self._variant_mapping[dialect.name])else:adapted=dialect.type_descriptor(self)ifadaptedisnotself:returnadapted# otherwise adapt the impl type, link# to a copy of this TypeDecorator and return# that.typedesc=self.load_dialect_impl(dialect).dialect_impl(dialect)tt=self._copy_with_check()tt.impl=tt.impl_instance=typedescreturnttdef_with_collation(self,collation:str)->Self:tt=self._copy_with_check()tt.impl=tt.impl_instance=self.impl_instance._with_collation(collation)returntt@util.ro_non_memoized_propertydef_type_affinity(self)->Optional[Type[TypeEngine[Any]]]:returnself.impl_instance._type_affinitydef_set_parent(self,parent:SchemaEventTarget,outer:bool=False,**kw:Any)->None:"""Support SchemaEventTarget"""super()._set_parent(parent)ifnotouterandisinstance(self.impl_instance,SchemaEventTarget):self.impl_instance._set_parent(parent,outer=False,**kw)def_set_parent_with_dispatch(self,parent:SchemaEventTarget,**kw:Any)->None:"""Support SchemaEventTarget"""super()._set_parent_with_dispatch(parent,outer=True,**kw)ifisinstance(self.impl_instance,SchemaEventTarget):self.impl_instance._set_parent_with_dispatch(parent)deftype_engine(self,dialect:Dialect)->TypeEngine[Any]:"""Return a dialect-specific :class:`.TypeEngine` instance for this :class:`.TypeDecorator`. In most cases this returns a dialect-adapted form of the :class:`.TypeEngine` type represented by ``self.impl``. Makes usage of :meth:`dialect_impl`. Behavior can be customized here by overriding :meth:`load_dialect_impl`. """adapted=dialect.type_descriptor(self)ifnotisinstance(adapted,type(self)):returnadaptedelse:returnself.load_dialect_impl(dialect)defload_dialect_impl(self,dialect:Dialect)->TypeEngine[Any]:"""Return a :class:`.TypeEngine` object corresponding to a dialect. This is an end-user override hook that can be used to provide differing types depending on the given dialect. It is used by the :class:`.TypeDecorator` implementation of :meth:`type_engine` to help determine what type should ultimately be returned for a given :class:`.TypeDecorator`. By default returns ``self.impl``. """returnself.impl_instancedef_unwrapped_dialect_impl(self,dialect:Dialect)->TypeEngine[Any]:"""Return the 'unwrapped' dialect impl for this type. This is used by the :meth:`.DefaultDialect.set_input_sizes` method. """# some dialects have a lookup for a TypeDecorator subclass directly.# postgresql.INTERVAL being the main exampletyp=self.dialect_impl(dialect)# if we are still a type decorator, load the per-dialect switch# (such as what Variant uses), then get the dialect impl for that.ifisinstance(typ,self.__class__):returntyp.load_dialect_impl(dialect).dialect_impl(dialect)else:returntypdef__getattr__(self,key:str)->Any:"""Proxy all other undefined accessors to the underlying implementation."""returngetattr(self.impl_instance,key)defprocess_literal_param(self,value:Optional[_T],dialect:Dialect)->str:"""Receive a literal parameter value to be rendered inline within a statement. .. note:: This method is called during the **SQL compilation** phase of a statement, when rendering a SQL string. Unlike other SQL compilation methods, it is passed a specific Python value to be rendered as a string. However it should not be confused with the :meth:`_types.TypeDecorator.process_bind_param` method, which is the more typical method that processes the actual value passed to a particular parameter at statement execution time. Custom subclasses of :class:`_types.TypeDecorator` should override this method to provide custom behaviors for incoming data values that are in the special case of being rendered as literals. The returned string will be rendered into the output string. """raiseNotImplementedError()defprocess_bind_param(self,value:Optional[_T],dialect:Dialect)->Any:"""Receive a bound parameter value to be converted. Custom subclasses of :class:`_types.TypeDecorator` should override this method to provide custom behaviors for incoming data values. This method is called at **statement execution time** and is passed the literal Python data value which is to be associated with a bound parameter in the statement. The operation could be anything desired to perform custom behavior, such as transforming or serializing data. This could also be used as a hook for validating logic. :param value: Data to operate upon, of any type expected by this method in the subclass. Can be ``None``. :param dialect: the :class:`.Dialect` in use. .. seealso:: :ref:`types_typedecorator` :meth:`_types.TypeDecorator.process_result_value` """raiseNotImplementedError()defprocess_result_value(self,value:Optional[Any],dialect:Dialect)->Optional[_T]:"""Receive a result-row column value to be converted. Custom subclasses of :class:`_types.TypeDecorator` should override this method to provide custom behaviors for data values being received in result rows coming from the database. This method is called at **result fetching time** and is passed the literal Python data value that's extracted from a database result row. The operation could be anything desired to perform custom behavior, such as transforming or deserializing data. :param value: Data to operate upon, of any type expected by this method in the subclass. Can be ``None``. :param dialect: the :class:`.Dialect` in use. .. seealso:: :ref:`types_typedecorator` :meth:`_types.TypeDecorator.process_bind_param` """raiseNotImplementedError()@util.memoized_propertydef_has_bind_processor(self)->bool:"""memoized boolean, check if process_bind_param is implemented. Allows the base process_bind_param to raise NotImplementedError without needing to test an expensive exception throw. """returnutil.method_is_overridden(self,TypeDecorator.process_bind_param)@util.memoized_propertydef_has_literal_processor(self)->bool:"""memoized boolean, check if process_literal_param is implemented."""returnutil.method_is_overridden(self,TypeDecorator.process_literal_param)defliteral_processor(self,dialect:Dialect)->Optional[_LiteralProcessorType[_T]]:"""Provide a literal processing function for the given :class:`.Dialect`. This is the method that fulfills the :class:`.TypeEngine` contract for literal value conversion which normally occurs via the :meth:`_types.TypeEngine.literal_processor` method. .. note:: User-defined subclasses of :class:`_types.TypeDecorator` should **not** implement this method, and should instead implement :meth:`_types.TypeDecorator.process_literal_param` so that the "inner" processing provided by the implementing type is maintained. """ifself._has_literal_processor:process_literal_param=self.process_literal_paramprocess_bind_param=Noneelifself._has_bind_processor:# use the bind processor if dont have a literal processor,# but we have an impl literal processorprocess_literal_param=Noneprocess_bind_param=self.process_bind_paramelse:process_literal_param=Noneprocess_bind_param=Noneifprocess_literal_paramisnotNone:impl_processor=self.impl_instance.literal_processor(dialect)ifimpl_processor:fixed_impl_processor=impl_processorfixed_process_literal_param=process_literal_paramdefprocess(value:Any)->str:returnfixed_impl_processor(fixed_process_literal_param(value,dialect))else:fixed_process_literal_param=process_literal_paramdefprocess(value:Any)->str:returnfixed_process_literal_param(value,dialect)returnprocesselifprocess_bind_paramisnotNone:impl_processor=self.impl_instance.literal_processor(dialect)ifnotimpl_processor:returnNoneelse:fixed_impl_processor=impl_processorfixed_process_bind_param=process_bind_paramdefprocess(value:Any)->str:returnfixed_impl_processor(fixed_process_bind_param(value,dialect))returnprocesselse:returnself.impl_instance.literal_processor(dialect)defbind_processor(self,dialect:Dialect)->Optional[_BindProcessorType[_T]]:"""Provide a bound value processing function for the given :class:`.Dialect`. This is the method that fulfills the :class:`.TypeEngine` contract for bound value conversion which normally occurs via the :meth:`_types.TypeEngine.bind_processor` method. .. note:: User-defined subclasses of :class:`_types.TypeDecorator` should **not** implement this method, and should instead implement :meth:`_types.TypeDecorator.process_bind_param` so that the "inner" processing provided by the implementing type is maintained. :param dialect: Dialect instance in use. """ifself._has_bind_processor:process_param=self.process_bind_paramimpl_processor=self.impl_instance.bind_processor(dialect)ifimpl_processor:fixed_impl_processor=impl_processorfixed_process_param=process_paramdefprocess(value:Optional[_T])->Any:returnfixed_impl_processor(fixed_process_param(value,dialect))else:fixed_process_param=process_paramdefprocess(value:Optional[_T])->Any:returnfixed_process_param(value,dialect)returnprocesselse:returnself.impl_instance.bind_processor(dialect)@util.memoized_propertydef_has_result_processor(self)->bool:"""memoized boolean, check if process_result_value is implemented. Allows the base process_result_value to raise NotImplementedError without needing to test an expensive exception throw. """returnutil.method_is_overridden(self,TypeDecorator.process_result_value)defresult_processor(self,dialect:Dialect,coltype:Any)->Optional[_ResultProcessorType[_T]]:"""Provide a result value processing function for the given :class:`.Dialect`. This is the method that fulfills the :class:`.TypeEngine` contract for bound value conversion which normally occurs via the :meth:`_types.TypeEngine.result_processor` method. .. note:: User-defined subclasses of :class:`_types.TypeDecorator` should **not** implement this method, and should instead implement :meth:`_types.TypeDecorator.process_result_value` so that the "inner" processing provided by the implementing type is maintained. :param dialect: Dialect instance in use. :param coltype: A SQLAlchemy data type """ifself._has_result_processor:process_value=self.process_result_valueimpl_processor=self.impl_instance.result_processor(dialect,coltype)ifimpl_processor:fixed_process_value=process_valuefixed_impl_processor=impl_processordefprocess(value:Any)->Optional[_T]:returnfixed_process_value(fixed_impl_processor(value),dialect)else:fixed_process_value=process_valuedefprocess(value:Any)->Optional[_T]:returnfixed_process_value(value,dialect)returnprocesselse:returnself.impl_instance.result_processor(dialect,coltype)@util.memoized_propertydef_has_bind_expression(self)->bool:return(util.method_is_overridden(self,TypeDecorator.bind_expression)orself.impl_instance._has_bind_expression)defbind_expression(self,bindparam:BindParameter[_T])->Optional[ColumnElement[_T]]:"""Given a bind value (i.e. a :class:`.BindParameter` instance), return a SQL expression which will typically wrap the given parameter. .. note:: This method is called during the **SQL compilation** phase of a statement, when rendering a SQL string. It is **not** necessarily called against specific values, and should not be confused with the :meth:`_types.TypeDecorator.process_bind_param` method, which is the more typical method that processes the actual value passed to a particular parameter at statement execution time. Subclasses of :class:`_types.TypeDecorator` can override this method to provide custom bind expression behavior for the type. This implementation will **replace** that of the underlying implementation type. """returnself.impl_instance.bind_expression(bindparam)@util.memoized_propertydef_has_column_expression(self)->bool:"""memoized boolean, check if column_expression is implemented. Allows the method to be skipped for the vast majority of expression types that don't use this feature. """return(util.method_is_overridden(self,TypeDecorator.column_expression)orself.impl_instance._has_column_expression)defcolumn_expression(self,column:ColumnElement[_T])->Optional[ColumnElement[_T]]:"""Given a SELECT column expression, return a wrapping SQL expression. .. note:: This method is called during the **SQL compilation** phase of a statement, when rendering a SQL string. It is **not** called against specific values, and should not be confused with the :meth:`_types.TypeDecorator.process_result_value` method, which is the more typical method that processes the actual value returned in a result row subsequent to statement execution time. Subclasses of :class:`_types.TypeDecorator` can override this method to provide custom column expression behavior for the type. This implementation will **replace** that of the underlying implementation type. See the description of :meth:`_types.TypeEngine.column_expression` for a complete description of the method's use. """returnself.impl_instance.column_expression(column)defcoerce_compared_value(self,op:Optional[OperatorType],value:Any)->Any:"""Suggest a type for a 'coerced' Python value in an expression. By default, returns self. This method is called by the expression system when an object using this type is on the left or right side of an expression against a plain Python object which does not yet have a SQLAlchemy type assigned:: expr = table.c.somecolumn + 35 Where above, if ``somecolumn`` uses this type, this method will be called with the value ``operator.add`` and ``35``. The return value is whatever SQLAlchemy type should be used for ``35`` for this particular operation. """returnselfdefcopy(self,**kw:Any)->Self:"""Produce a copy of this :class:`.TypeDecorator` instance. This is a shallow copy and is provided to fulfill part of the :class:`.TypeEngine` contract. It usually does not need to be overridden unless the user-defined :class:`.TypeDecorator` has local state that should be deep-copied. """instance=self.__class__.__new__(self.__class__)instance.__dict__.update(self.__dict__)returninstancedefget_dbapi_type(self,dbapi:ModuleType)->Optional[Any]:"""Return the DBAPI type object represented by this :class:`.TypeDecorator`. By default this calls upon :meth:`.TypeEngine.get_dbapi_type` of the underlying "impl". """returnself.impl_instance.get_dbapi_type(dbapi)defcompare_values(self,x:Any,y:Any)->bool:"""Given two values, compare them for equality. By default this calls upon :meth:`.TypeEngine.compare_values` of the underlying "impl", which in turn usually uses the Python equals operator ``==``. This function is used by the ORM to compare an original-loaded value with an intercepted "changed" value, to determine if a net change has occurred. """returnself.impl_instance.compare_values(x,y)# mypy property bug@propertydefsort_key_function(self)->Optional[Callable[[Any],Any]]:# type: ignore # noqa: E501returnself.impl_instance.sort_key_functiondef__repr__(self)->str:returnutil.generic_repr(self,to_inspect=self.impl_instance)classVariant(TypeDecorator[_T]):"""deprecated. symbol is present for backwards-compatibility with workaround recipes, however this actual type should not be used. """def__init__(self,*arg:Any,**kw:Any):raiseNotImplementedError("Variant is no longer used in SQLAlchemy; this is a ""placeholder symbol for backwards compatibility.")@overloaddefto_instance(typeobj:Union[Type[_TE],_TE],*arg:Any,**kw:Any)->_TE:...@overloaddefto_instance(typeobj:None,*arg:Any,**kw:Any)->TypeEngine[None]:...defto_instance(typeobj:Union[Type[_TE],_TE,None],*arg:Any,**kw:Any)->Union[_TE,TypeEngine[None]]:iftypeobjisNone:returnNULLTYPEifcallable(typeobj):returntypeobj(*arg,**kw)else:returntypeobjdefadapt_type(typeobj:_TypeEngineArgument[Any],colspecs:Mapping[Type[Any],Type[TypeEngine[Any]]],)->TypeEngine[Any]:typeobj=to_instance(typeobj)fortintypeobj.__class__.__mro__[0:-1]:try:impltype=colspecs[t]breakexceptKeyError:passelse:# couldn't adapt - so just return the type itself# (it may be a user-defined type)returntypeobj# if we adapted the given generic type to a database-specific type,# but it turns out the originally given "generic" type# is actually a subclass of our resulting type, then we were already# given a more specific type than that required; so use that.ifissubclass(typeobj.__class__,impltype):returntypeobjreturntypeobj.adapt(impltype)