"""The typing module: Support for gradual typing as defined by PEP 484 and subsequent PEPs.Among other things, the module includes the following:* Generic, Protocol, and internal machinery to support generic aliases. All subscripted types like X[int], Union[int, str] are generic aliases.* Various "special forms" that have unique meanings in type annotations: NoReturn, Never, ClassVar, Self, Concatenate, Unpack, and others.* Classes whose instances can be type arguments to generic classes and functions: TypeVar, ParamSpec, TypeVarTuple.* Public helper functions: get_type_hints, overload, cast, final, and others.* Several protocols to support duck-typing: SupportsFloat, SupportsIndex, SupportsAbs, and others.* Special types: NewType, NamedTuple, TypedDict.* Deprecated wrapper submodules for re and io related types.* Deprecated aliases for builtin types and collections.abc ABCs.Any name not present in __all__ is an implementation detailthat may be changed without notice. Use at your own risk!"""fromabcimportabstractmethod,ABCMetaimportcollectionsfromcollectionsimportdefaultdictimportcollections.abcimportcontextlibimportfunctoolsimportoperatorimportreasstdlib_re# Avoid confusion with the re we export.importsysimporttypesimportwarningsfromtypesimportWrapperDescriptorType,MethodWrapperType,MethodDescriptorType,GenericAliastry:from_typingimport_idfuncexceptImportError:def_idfunc(_,x):returnx# Please keep __all__ alphabetized within each category.__all__=[# Super-special typing primitives.'Annotated','Any','Callable','ClassVar','Concatenate','Final','ForwardRef','Generic','Literal','Optional','ParamSpec','Protocol','Tuple','Type','TypeVar','TypeVarTuple','Union',# ABCs (from collections.abc).'AbstractSet',# collections.abc.Set.'ByteString','Container','ContextManager','Hashable','ItemsView','Iterable','Iterator','KeysView','Mapping','MappingView','MutableMapping','MutableSequence','MutableSet','Sequence','Sized','ValuesView','Awaitable','AsyncIterator','AsyncIterable','Coroutine','Collection','AsyncGenerator','AsyncContextManager',# Structural checks, a.k.a. protocols.'Reversible','SupportsAbs','SupportsBytes','SupportsComplex','SupportsFloat','SupportsIndex','SupportsInt','SupportsRound',# Concrete collection types.'ChainMap','Counter','Deque','Dict','DefaultDict','List','OrderedDict','Set','FrozenSet','NamedTuple',# Not really a type.'TypedDict',# Not really a type.'Generator',# Other concrete types.'BinaryIO','IO','Match','Pattern','TextIO',# One-off things.'AnyStr','assert_type','assert_never','cast','clear_overloads','dataclass_transform','final','get_args','get_origin','get_overloads','get_type_hints','is_typeddict','LiteralString','Never','NewType','no_type_check','no_type_check_decorator','NoReturn','NotRequired','overload','ParamSpecArgs','ParamSpecKwargs','Required','reveal_type','runtime_checkable','Self','Text','TYPE_CHECKING','TypeAlias','TypeGuard','Unpack',]# The pseudo-submodules 're' and 'io' are part of the public# namespace, but excluded from __all__ because they might stomp on# legitimate imports of those modules.def_type_convert(arg,module=None,*,allow_special_forms=False):"""For converting None to type(None), and strings to ForwardRef."""ifargisNone:returntype(None)ifisinstance(arg,str):returnForwardRef(arg,module=module,is_class=allow_special_forms)returnargdef_type_check(arg,msg,is_argument=True,module=None,*,allow_special_forms=False):"""Check that the argument is a type, and return it (internal helper). As a special case, accept None and return type(None) instead. Also wrap strings into ForwardRef instances. Consider several corner cases, for example plain special forms like Union are not valid, while Union[int, str] is OK, etc. The msg argument is a human-readable error message, e.g.:: "Union[arg, ...]: arg should be a type." We append the repr() of the actual value (truncated to 100 chars). """invalid_generic_forms=(Generic,Protocol)ifnotallow_special_forms:invalid_generic_forms+=(ClassVar,)ifis_argument:invalid_generic_forms+=(Final,)arg=_type_convert(arg,module=module,allow_special_forms=allow_special_forms)if(isinstance(arg,_GenericAlias)andarg.__origin__ininvalid_generic_forms):raiseTypeError(f"{arg} is not valid as type argument")ifargin(Any,LiteralString,NoReturn,Never,Self,TypeAlias):returnargifallow_special_formsandargin(ClassVar,Final):returnargifisinstance(arg,_SpecialForm)orargin(Generic,Protocol):raiseTypeError(f"Plain {arg} is not valid as type argument")iftype(arg)istuple:raiseTypeError(f"{msg} Got {arg!r:.100}.")returnargdef_is_param_expr(arg):returnargis...orisinstance(arg,(tuple,list,ParamSpec,_ConcatenateGenericAlias))def_should_unflatten_callable_args(typ,args):"""Internal helper for munging collections.abc.Callable's __args__. The canonical representation for a Callable's __args__ flattens the argument types, see https://github.com/python/cpython/issues/86361. For example:: >>> import collections.abc >>> P = ParamSpec('P') >>> collections.abc.Callable[[int, int], str].__args__ == (int, int, str) True >>> collections.abc.Callable[P, str].__args__ == (P, str) True As a result, if we need to reconstruct the Callable from its __args__, we need to unflatten it. """return(typ.__origin__iscollections.abc.Callableandnot(len(args)==2and_is_param_expr(args[0])))def_type_repr(obj):"""Return the repr() of an object, special-casing types (internal helper). If obj is a type, we return a shorter version than the default type.__repr__, based on the module and qualified name, which is typically enough to uniquely identify a type. For everything else, we fall back on repr(obj). """ifisinstance(obj,types.GenericAlias):returnrepr(obj)ifisinstance(obj,type):ifobj.__module__=='builtins':returnobj.__qualname__returnf'{obj.__module__}.{obj.__qualname__}'ifobjis...:return('...')ifisinstance(obj,types.FunctionType):returnobj.__name__returnrepr(obj)def_collect_parameters(args):"""Collect all type variables and parameter specifications in args in order of first appearance (lexicographic order). For example:: >>> P = ParamSpec('P') >>> T = TypeVar('T') >>> _collect_parameters((T, Callable[P, T])) (~T, ~P) """parameters=[]fortinargs:ifisinstance(t,type):# We don't want __parameters__ descriptor of a bare Python class.passelifisinstance(t,tuple):# `t` might be a tuple, when `ParamSpec` is substituted with# `[T, int]`, or `[int, *Ts]`, etc.forxint:forcollectedin_collect_parameters([x]):ifcollectednotinparameters:parameters.append(collected)elifhasattr(t,'__typing_subst__'):iftnotinparameters:parameters.append(t)else:forxingetattr(t,'__parameters__',()):ifxnotinparameters:parameters.append(x)returntuple(parameters)def_check_generic(cls,parameters,elen):"""Check correct count for parameters of a generic cls (internal helper). This gives a nice error message in case of count mismatch. """ifnotelen:raiseTypeError(f"{cls} is not a generic class")alen=len(parameters)ifalen!=elen:raiseTypeError(f"Too {'many'ifalen>elenelse'few'} arguments for {cls};"f" actual {alen}, expected {elen}")def_unpack_args(args):newargs=[]forarginargs:subargs=getattr(arg,'__typing_unpacked_tuple_args__',None)ifsubargsisnotNoneandnot(subargsandsubargs[-1]is...):newargs.extend(subargs)else:newargs.append(arg)returnnewargsdef_deduplicate(params,*,unhashable_fallback=False):# Weed out strict duplicates, preserving the first of each occurrence.try:returndict.fromkeys(params)exceptTypeError:ifnotunhashable_fallback:raise# Happens for cases like `Annotated[dict, {'x': IntValidator()}]`return_deduplicate_unhashable(params)def_deduplicate_unhashable(unhashable_params):new_unhashable=[]fortinunhashable_params:iftnotinnew_unhashable:new_unhashable.append(t)returnnew_unhashabledef_compare_args_orderless(first_args,second_args):first_unhashable=_deduplicate_unhashable(first_args)second_unhashable=_deduplicate_unhashable(second_args)t=list(second_unhashable)try:foreleminfirst_unhashable:t.remove(elem)exceptValueError:returnFalsereturnnottdef_remove_dups_flatten(parameters):"""Internal helper for Union creation and substitution. Flatten Unions among parameters, then remove duplicates. """# Flatten out Union[Union[...], ...].params=[]forpinparameters:ifisinstance(p,(_UnionGenericAlias,types.UnionType)):params.extend(p.__args__)else:params.append(p)returntuple(_deduplicate(params,unhashable_fallback=True))def_flatten_literal_params(parameters):"""Internal helper for Literal creation: flatten Literals among parameters."""params=[]forpinparameters:ifisinstance(p,_LiteralGenericAlias):params.extend(p.__args__)else:params.append(p)returntuple(params)_cleanups=[]def_tp_cache(func=None,/,*,typed=False):"""Internal wrapper caching __getitem__ of generic types. For non-hashable arguments, the original function is used as a fallback. """defdecorator(func):cached=functools.lru_cache(typed=typed)(func)_cleanups.append(cached.cache_clear)@functools.wraps(func)definner(*args,**kwds):try:returncached(*args,**kwds)exceptTypeError:pass# All real errors (not unhashable args) are raised below.returnfunc(*args,**kwds)returninneriffuncisnotNone:returndecorator(func)returndecoratordef_eval_type(t,globalns,localns,recursive_guard=frozenset()):"""Evaluate all forward references in the given type t. For use of globalns and localns see the docstring for get_type_hints(). recursive_guard is used to prevent infinite recursion with a recursive ForwardRef. """ifisinstance(t,ForwardRef):returnt._evaluate(globalns,localns,recursive_guard)ifisinstance(t,(_GenericAlias,GenericAlias,types.UnionType)):ifisinstance(t,GenericAlias):args=tuple(ForwardRef(arg)ifisinstance(arg,str)elseargforargint.__args__)is_unpacked=t.__unpacked__if_should_unflatten_callable_args(t,args):t=t.__origin__[(args[:-1],args[-1])]else:t=t.__origin__[args]ifis_unpacked:t=Unpack[t]ev_args=tuple(_eval_type(a,globalns,localns,recursive_guard)foraint.__args__)ifev_args==t.__args__:returntifisinstance(t,GenericAlias):returnGenericAlias(t.__origin__,ev_args)ifisinstance(t,types.UnionType):returnfunctools.reduce(operator.or_,ev_args)else:returnt.copy_with(ev_args)returntclass_Final:"""Mixin to prohibit subclassing."""__slots__=('__weakref__',)def__init_subclass__(cls,/,*args,**kwds):if'_root'notinkwds:raiseTypeError("Cannot subclass special typing classes")class_Immutable:"""Mixin to indicate that object should not be copied."""__slots__=()def__copy__(self):returnselfdef__deepcopy__(self,memo):returnselfclass_NotIterable:"""Mixin to prevent iteration, without being compatible with Iterable. That is, we could do:: def __iter__(self): raise TypeError() But this would make users of this mixin duck type-compatible with collections.abc.Iterable - isinstance(foo, Iterable) would be True. Luckily, we can instead prevent iteration by setting __iter__ to None, which is treated specially. """__slots__=()__iter__=None# Internal indicator of special typing constructs.# See __doc__ instance attribute for specific docs.class_SpecialForm(_Final,_NotIterable,_root=True):__slots__=('_name','__doc__','_getitem')def__init__(self,getitem):self._getitem=getitemself._name=getitem.__name__self.__doc__=getitem.__doc__def__getattr__(self,item):ifitemin{'__name__','__qualname__'}:returnself._nameraiseAttributeError(item)def__mro_entries__(self,bases):raiseTypeError(f"Cannot subclass {self!r}")def__repr__(self):return'typing.'+self._namedef__reduce__(self):returnself._namedef__call__(self,*args,**kwds):raiseTypeError(f"Cannot instantiate {self!r}")def__or__(self,other):returnUnion[self,other]def__ror__(self,other):returnUnion[other,self]def__instancecheck__(self,obj):raiseTypeError(f"{self} cannot be used with isinstance()")def__subclasscheck__(self,cls):raiseTypeError(f"{self} cannot be used with issubclass()")@_tp_cachedef__getitem__(self,parameters):returnself._getitem(self,parameters)class_LiteralSpecialForm(_SpecialForm,_root=True):def__getitem__(self,parameters):ifnotisinstance(parameters,tuple):parameters=(parameters,)returnself._getitem(self,*parameters)class_AnyMeta(type):def__instancecheck__(self,obj):ifselfisAny:raiseTypeError("typing.Any cannot be used with isinstance()")returnsuper().__instancecheck__(obj)def__repr__(self):ifselfisAny:return"typing.Any"returnsuper().__repr__()# respect to subclassesclassAny(metaclass=_AnyMeta):"""Special type indicating an unconstrained type. - Any is compatible with every type. - Any assumed to have all methods. - All values assumed to be instances of Any. Note that all the above statements are true from the point of view of static type checkers. At runtime, Any should not be used with instance checks. """def__new__(cls,*args,**kwargs):ifclsisAny:raiseTypeError("Any cannot be instantiated")returnsuper().__new__(cls)@_SpecialFormdefNoReturn(self,parameters):"""Special type indicating functions that never return. Example:: from typing import NoReturn def stop() -> NoReturn: raise Exception('no way') NoReturn can also be used as a bottom type, a type that has no values. Starting in Python 3.11, the Never type should be used for this concept instead. Type checkers should treat the two equivalently. """raiseTypeError(f"{self} is not subscriptable")# This is semantically identical to NoReturn, but it is implemented# separately so that type checkers can distinguish between the two# if they want.@_SpecialFormdefNever(self,parameters):"""The bottom type, a type that has no members. This can be used to define a function that should never be called, or a function that never returns:: from typing import Never def never_call_me(arg: Never) -> None: pass def int_or_str(arg: int | str) -> None: never_call_me(arg) # type checker error match arg: case int(): print("It's an int") case str(): print("It's a str") case _: never_call_me(arg) # OK, arg is of type Never """raiseTypeError(f"{self} is not subscriptable")@_SpecialFormdefSelf(self,parameters):"""Used to spell the type of "self" in classes. Example:: from typing import Self class Foo: def return_self(self) -> Self: ... return self This is especially useful for: - classmethods that are used as alternative constructors - annotating an `__enter__` method which returns self """raiseTypeError(f"{self} is not subscriptable")@_SpecialFormdefLiteralString(self,parameters):"""Represents an arbitrary literal string. Example:: from typing import LiteralString def run_query(sql: LiteralString) -> None: ... def caller(arbitrary_string: str, literal_string: LiteralString) -> None: run_query("SELECT * FROM students") # OK run_query(literal_string) # OK run_query("SELECT * FROM " + literal_string) # OK run_query(arbitrary_string) # type checker error run_query( # type checker error f"SELECT * FROM students WHERE name = {arbitrary_string}" ) Only string literals and other LiteralStrings are compatible with LiteralString. This provides a tool to help prevent security issues such as SQL injection. """raiseTypeError(f"{self} is not subscriptable")@_SpecialFormdefClassVar(self,parameters):"""Special type construct to mark class variables. An annotation wrapped in ClassVar indicates that a given attribute is intended to be used as a class variable and should not be set on instances of that class. Usage:: class Starship: stats: ClassVar[dict[str, int]] = {} # class variable damage: int = 10 # instance variable ClassVar accepts only types and cannot be further subscribed. Note that ClassVar is not a class itself, and should not be used with isinstance() or issubclass(). """item=_type_check(parameters,f'{self} accepts only single type.')return_GenericAlias(self,(item,))@_SpecialFormdefFinal(self,parameters):"""Special typing construct to indicate final names to type checkers. A final name cannot be re-assigned or overridden in a subclass. For example:: MAX_SIZE: Final = 9000 MAX_SIZE += 1 # Error reported by type checker class Connection: TIMEOUT: Final[int] = 10 class FastConnector(Connection): TIMEOUT = 1 # Error reported by type checker There is no runtime checking of these properties. """item=_type_check(parameters,f'{self} accepts only single type.')return_GenericAlias(self,(item,))@_SpecialFormdefUnion(self,parameters):"""Union type; Union[X, Y] means either X or Y. On Python 3.10 and higher, the | operator can also be used to denote unions; X | Y means the same thing to the type checker as Union[X, Y]. To define a union, use e.g. Union[int, str]. Details: - The arguments must be types and there must be at least one. - None as an argument is a special case and is replaced by type(None). - Unions of unions are flattened, e.g.:: assert Union[Union[int, str], float] == Union[int, str, float] - Unions of a single argument vanish, e.g.:: assert Union[int] == int # The constructor actually returns int - Redundant arguments are skipped, e.g.:: assert Union[int, str, int] == Union[int, str] - When comparing unions, the argument order is ignored, e.g.:: assert Union[int, str] == Union[str, int] - You cannot subclass or instantiate a union. - You can use Optional[X] as a shorthand for Union[X, None]. """ifparameters==():raiseTypeError("Cannot take a Union of no types.")ifnotisinstance(parameters,tuple):parameters=(parameters,)msg="Union[arg, ...]: each arg must be a type."parameters=tuple(_type_check(p,msg)forpinparameters)parameters=_remove_dups_flatten(parameters)iflen(parameters)==1:returnparameters[0]iflen(parameters)==2andtype(None)inparameters:return_UnionGenericAlias(self,parameters,name="Optional")return_UnionGenericAlias(self,parameters)@_SpecialFormdefOptional(self,parameters):"""Optional[X] is equivalent to Union[X, None]."""arg=_type_check(parameters,f"{self} requires a single type.")returnUnion[arg,type(None)]@_LiteralSpecialForm@_tp_cache(typed=True)defLiteral(self,*parameters):"""Special typing form to define literal types (a.k.a. value types). This form can be used to indicate to type checkers that the corresponding variable or function parameter has a value equivalent to the provided literal (or one of several literals):: def validate_simple(data: Any) -> Literal[True]: # always returns True ... MODE = Literal['r', 'rb', 'w', 'wb'] def open_helper(file: str, mode: MODE) -> str: ... open_helper('/some/path', 'r') # Passes type check open_helper('/other/path', 'typo') # Error in type checker Literal[...] cannot be subclassed. At runtime, an arbitrary value is allowed as type argument to Literal[...], but type checkers may impose restrictions. """# There is no '_type_check' call because arguments to Literal[...] are# values, not types.parameters=_flatten_literal_params(parameters)try:parameters=tuple(pforp,_in_deduplicate(list(_value_and_type_iter(parameters))))exceptTypeError:# unhashable parameterspassreturn_LiteralGenericAlias(self,parameters)@_SpecialFormdefTypeAlias(self,parameters):"""Special form for marking type aliases. Use TypeAlias to indicate that an assignment should be recognized as a proper type alias definition by type checkers. For example:: Predicate: TypeAlias = Callable[..., bool] It's invalid when used anywhere except as in the example above. """raiseTypeError(f"{self} is not subscriptable")@_SpecialFormdefConcatenate(self,parameters):"""Special form for annotating higher-order functions. ``Concatenate`` can be used in conjunction with ``ParamSpec`` and ``Callable`` to represent a higher-order function which adds, removes or transforms the parameters of a callable. For example:: Callable[Concatenate[int, P], int] See PEP 612 for detailed information. """ifparameters==():raiseTypeError("Cannot take a Concatenate of no types.")ifnotisinstance(parameters,tuple):parameters=(parameters,)ifnot(parameters[-1]is...orisinstance(parameters[-1],ParamSpec)):raiseTypeError("The last parameter to Concatenate should be a ""ParamSpec variable or ellipsis.")msg="Concatenate[arg, ...]: each arg must be a type."parameters=(*(_type_check(p,msg)forpinparameters[:-1]),parameters[-1])return_ConcatenateGenericAlias(self,parameters,_paramspec_tvars=True)@_SpecialFormdefTypeGuard(self,parameters):"""Special typing construct for marking user-defined type guard functions. ``TypeGuard`` can be used to annotate the return type of a user-defined type guard function. ``TypeGuard`` only accepts a single type argument. At runtime, functions marked this way should return a boolean. ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static type checkers to determine a more precise type of an expression within a program's code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a "type guard". Sometimes it would be convenient to use a user-defined boolean function as a type guard. Such a function should use ``TypeGuard[...]`` as its return type to alert static type checkers to this intention. Using ``-> TypeGuard`` tells the static type checker that for a given function: 1. The return value is a boolean. 2. If the return value is ``True``, the type of its argument is the type inside ``TypeGuard``. For example:: def is_str(val: Union[str, float]): # "isinstance" type guard if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ... Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower form of ``TypeA`` (it can even be a wider form) and this may lead to type-unsafe results. The main reason is to allow for things like narrowing ``List[object]`` to ``List[str]`` even though the latter is not a subtype of the former, since ``List`` is invariant. The responsibility of writing type-safe type guards is left to the user. ``TypeGuard`` also works with type variables. For more information, see PEP 647 (User-Defined Type Guards). """item=_type_check(parameters,f'{self} accepts only single type.')return_GenericAlias(self,(item,))classForwardRef(_Final,_root=True):"""Internal wrapper to hold a forward reference."""__slots__=('__forward_arg__','__forward_code__','__forward_evaluated__','__forward_value__','__forward_is_argument__','__forward_is_class__','__forward_module__')def__init__(self,arg,is_argument=True,module=None,*,is_class=False):ifnotisinstance(arg,str):raiseTypeError(f"Forward reference must be a string -- got {arg!r}")# If we do `def f(*args: *Ts)`, then we'll have `arg = '*Ts'`.# Unfortunately, this isn't a valid expression on its own, so we# do the unpacking manually.ifarg.startswith('*'):arg_to_compile=f'({arg},)[0]'# E.g. (*Ts,)[0] or (*tuple[int, int],)[0]else:arg_to_compile=argtry:code=compile(arg_to_compile,'<string>','eval')exceptSyntaxError:raiseSyntaxError(f"Forward reference must be an expression -- got {arg!r}")self.__forward_arg__=argself.__forward_code__=codeself.__forward_evaluated__=Falseself.__forward_value__=Noneself.__forward_is_argument__=is_argumentself.__forward_is_class__=is_classself.__forward_module__=moduledef_evaluate(self,globalns,localns,recursive_guard):ifself.__forward_arg__inrecursive_guard:returnselfifnotself.__forward_evaluated__orlocalnsisnotglobalns:ifglobalnsisNoneandlocalnsisNone:globalns=localns={}elifglobalnsisNone:globalns=localnseliflocalnsisNone:localns=globalnsifself.__forward_module__isnotNone:globalns=getattr(sys.modules.get(self.__forward_module__,None),'__dict__',globalns)type_=_type_check(eval(self.__forward_code__,globalns,localns),"Forward references must evaluate to types.",is_argument=self.__forward_is_argument__,allow_special_forms=self.__forward_is_class__,)self.__forward_value__=_eval_type(type_,globalns,localns,recursive_guard|{self.__forward_arg__})self.__forward_evaluated__=Truereturnself.__forward_value__def__eq__(self,other):ifnotisinstance(other,ForwardRef):returnNotImplementedifself.__forward_evaluated__andother.__forward_evaluated__:return(self.__forward_arg__==other.__forward_arg__andself.__forward_value__==other.__forward_value__)return(self.__forward_arg__==other.__forward_arg__andself.__forward_module__==other.__forward_module__)def__hash__(self):returnhash((self.__forward_arg__,self.__forward_module__))def__or__(self,other):returnUnion[self,other]def__ror__(self,other):returnUnion[other,self]def__repr__(self):ifself.__forward_module__isNone:module_repr=''else:module_repr=f', module={self.__forward_module__!r}'returnf'ForwardRef({self.__forward_arg__!r}{module_repr})'def_is_unpacked_typevartuple(x:Any)->bool:return((notisinstance(x,type))andgetattr(x,'__typing_is_unpacked_typevartuple__',False))def_is_typevar_like(x:Any)->bool:returnisinstance(x,(TypeVar,ParamSpec))or_is_unpacked_typevartuple(x)class_PickleUsingNameMixin:"""Mixin enabling pickling based on self.__name__."""def__reduce__(self):returnself.__name__class_BoundVarianceMixin:"""Mixin giving __init__ bound and variance arguments. This is used by TypeVar and ParamSpec, which both employ the notions of a type 'bound' (restricting type arguments to be a subtype of some specified type) and type 'variance' (determining subtype relations between generic types). """def__init__(self,bound,covariant,contravariant):"""Used to setup TypeVars and ParamSpec's bound, covariant and contravariant attributes. """ifcovariantandcontravariant:raiseValueError("Bivariant types are not supported.")self.__covariant__=bool(covariant)self.__contravariant__=bool(contravariant)ifbound:self.__bound__=_type_check(bound,"Bound must be a type.")else:self.__bound__=Nonedef__or__(self,right):returnUnion[self,right]def__ror__(self,left):returnUnion[left,self]def__repr__(self):ifself.__covariant__:prefix='+'elifself.__contravariant__:prefix='-'else:prefix='~'returnprefix+self.__name__classTypeVar(_Final,_Immutable,_BoundVarianceMixin,_PickleUsingNameMixin,_root=True):"""Type variable. Usage:: T = TypeVar('T') # Can be anything A = TypeVar('A', str, bytes) # Must be str or bytes Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows: def repeat(x: T, n: int) -> List[T]: '''Return a list containing n references to x.''' return [x]*n def longest(x: A, y: A) -> A: '''Return the longest of two strings.''' return x if len(x) >= len(y) else y The latter example's signature is essentially the overloading of (str, str) -> str and (bytes, bytes) -> bytes. Also note that if the arguments are instances of some subclass of str, the return type is still plain str. At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. Type variables defined with covariant=True or contravariant=True can be used to declare covariant or contravariant generic types. See PEP 484 for more details. By default generic types are invariant in all type variables. Type variables can be introspected. e.g.: T.__name__ == 'T' T.__constraints__ == () T.__covariant__ == False T.__contravariant__ = False A.__constraints__ == (str, bytes) Note that only type variables defined in global scope can be pickled. """def__init__(self,name,*constraints,bound=None,covariant=False,contravariant=False):self.__name__=namesuper().__init__(bound,covariant,contravariant)ifconstraintsandboundisnotNone:raiseTypeError("Constraints cannot be combined with bound=...")ifconstraintsandlen(constraints)==1:raiseTypeError("A single constraint is not allowed")msg="TypeVar(name, constraint, ...): constraints must be types."self.__constraints__=tuple(_type_check(t,msg)fortinconstraints)def_mod=_caller()ifdef_mod!='typing':self.__module__=def_moddef__typing_subst__(self,arg):msg="Parameters to generic types must be types."arg=_type_check(arg,msg,is_argument=True)if((isinstance(arg,_GenericAlias)andarg.__origin__isUnpack)or(isinstance(arg,GenericAlias)andgetattr(arg,'__unpacked__',False))):raiseTypeError(f"{arg} is not valid as type argument")returnargclassTypeVarTuple(_Final,_Immutable,_PickleUsingNameMixin,_root=True):"""Type variable tuple. Usage: Ts = TypeVarTuple('Ts') # Can be given any name Just as a TypeVar (type variable) is a placeholder for a single type, a TypeVarTuple is a placeholder for an *arbitrary* number of types. For example, if we define a generic class using a TypeVarTuple: class C(Generic[*Ts]): ... Then we can parameterize that class with an arbitrary number of type arguments: C[int] # Fine C[int, str] # Also fine C[()] # Even this is fine For more details, see PEP 646. Note that only TypeVarTuples defined in global scope can be pickled. """def__init__(self,name):self.__name__=name# Used for pickling.def_mod=_caller()ifdef_mod!='typing':self.__module__=def_moddef__iter__(self):yieldUnpack[self]def__repr__(self):returnself.__name__def__typing_subst__(self,arg):raiseTypeError("Substitution of bare TypeVarTuple is not supported")def__typing_prepare_subst__(self,alias,args):params=alias.__parameters__typevartuple_index=params.index(self)forparaminparams[typevartuple_index+1:]:ifisinstance(param,TypeVarTuple):raiseTypeError(f"More than one TypeVarTuple parameter in {alias}")alen=len(args)plen=len(params)left=typevartuple_indexright=plen-typevartuple_index-1var_tuple_index=Nonefillarg=Nonefork,arginenumerate(args):ifnotisinstance(arg,type):subargs=getattr(arg,'__typing_unpacked_tuple_args__',None)ifsubargsandlen(subargs)==2andsubargs[-1]is...:ifvar_tuple_indexisnotNone:raiseTypeError("More than one unpacked arbitrary-length tuple argument")var_tuple_index=kfillarg=subargs[0]ifvar_tuple_indexisnotNone:left=min(left,var_tuple_index)right=min(right,alen-var_tuple_index-1)elifleft+right>alen:raiseTypeError(f"Too few arguments for {alias};"f" actual {alen}, expected at least {plen-1}")return(*args[:left],*([fillarg]*(typevartuple_index-left)),tuple(args[left:alen-right]),*([fillarg]*(plen-right-left-typevartuple_index-1)),*args[alen-right:],)classParamSpecArgs(_Final,_Immutable,_root=True):"""The args for a ParamSpec object. Given a ParamSpec object P, P.args is an instance of ParamSpecArgs. ParamSpecArgs objects have a reference back to their ParamSpec: P.args.__origin__ is P This type is meant for runtime introspection and has no special meaning to static type checkers. """def__init__(self,origin):self.__origin__=origindef__repr__(self):returnf"{self.__origin__.__name__}.args"def__eq__(self,other):ifnotisinstance(other,ParamSpecArgs):returnNotImplementedreturnself.__origin__==other.__origin__classParamSpecKwargs(_Final,_Immutable,_root=True):"""The kwargs for a ParamSpec object. Given a ParamSpec object P, P.kwargs is an instance of ParamSpecKwargs. ParamSpecKwargs objects have a reference back to their ParamSpec: P.kwargs.__origin__ is P This type is meant for runtime introspection and has no special meaning to static type checkers. """def__init__(self,origin):self.__origin__=origindef__repr__(self):returnf"{self.__origin__.__name__}.kwargs"def__eq__(self,other):ifnotisinstance(other,ParamSpecKwargs):returnNotImplementedreturnself.__origin__==other.__origin__classParamSpec(_Final,_Immutable,_BoundVarianceMixin,_PickleUsingNameMixin,_root=True):"""Parameter specification variable. Usage:: P = ParamSpec('P') Parameter specification variables exist primarily for the benefit of static type checkers. They are used to forward the parameter types of one callable to another callable, a pattern commonly found in higher order functions and decorators. They are only valid when used in ``Concatenate``, or as the first argument to ``Callable``, or as parameters for user-defined Generics. See class Generic for more information on generic types. An example for annotating a decorator:: T = TypeVar('T') P = ParamSpec('P') def add_logging(f: Callable[P, T]) -> Callable[P, T]: '''A type-safe decorator to add logging to a function.''' def inner(*args: P.args, **kwargs: P.kwargs) -> T: logging.info(f'{f.__name__} was called') return f(*args, **kwargs) return inner @add_logging def add_two(x: float, y: float) -> float: '''Add two numbers together.''' return x + y Parameter specification variables can be introspected. e.g.: P.__name__ == 'P' Note that only parameter specification variables defined in global scope can be pickled. """@propertydefargs(self):returnParamSpecArgs(self)@propertydefkwargs(self):returnParamSpecKwargs(self)def__init__(self,name,*,bound=None,covariant=False,contravariant=False):self.__name__=namesuper().__init__(bound,covariant,contravariant)def_mod=_caller()ifdef_mod!='typing':self.__module__=def_moddef__typing_subst__(self,arg):ifisinstance(arg,(list,tuple)):arg=tuple(_type_check(a,"Expected a type.")forainarg)elifnot_is_param_expr(arg):raiseTypeError(f"Expected a list of types, an ellipsis, "f"ParamSpec, or Concatenate. Got {arg}")returnargdef__typing_prepare_subst__(self,alias,args):params=alias.__parameters__i=params.index(self)ifi>=len(args):raiseTypeError(f"Too few arguments for {alias}")# Special case where Z[[int, str, bool]] == Z[int, str, bool] in PEP 612.iflen(params)==1andnot_is_param_expr(args[0]):asserti==0args=(args,)# Convert lists to tuples to help other libraries cache the results.elifisinstance(args[i],list):args=(*args[:i],tuple(args[i]),*args[i+1:])returnargsdef_is_dunder(attr):returnattr.startswith('__')andattr.endswith('__')class_BaseGenericAlias(_Final,_root=True):"""The central part of the internal API. This represents a generic version of type 'origin' with type arguments 'params'. There are two kind of these aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collections.abc. These must have 'name' always set. If 'inst' is False, then the alias can't be instantiated; this is used by e.g. typing.List and typing.Dict. """def__init__(self,origin,*,inst=True,name=None):self._inst=instself._name=nameself.__origin__=originself.__slots__=None# This is not documented.def__call__(self,*args,**kwargs):ifnotself._inst:raiseTypeError(f"Type {self._name} cannot be instantiated; "f"use {self.__origin__.__name__}() instead")result=self.__origin__(*args,**kwargs)try:result.__orig_class__=self# Some objects raise TypeError (or something even more exotic)# if you try to set attributes on them; we guard against that hereexceptException:passreturnresultdef__mro_entries__(self,bases):res=[]ifself.__origin__notinbases:res.append(self.__origin__)i=bases.index(self)forbinbases[i+1:]:ifisinstance(b,_BaseGenericAlias)orissubclass(b,Generic):breakelse:res.append(Generic)returntuple(res)def__getattr__(self,attr):ifattrin{'__name__','__qualname__'}:returnself._nameorself.__origin__.__name__# We are careful for copy and pickle.# Also for simplicity we don't relay any dunder namesif'__origin__'inself.__dict__andnot_is_dunder(attr):returngetattr(self.__origin__,attr)raiseAttributeError(attr)def__setattr__(self,attr,val):if_is_dunder(attr)orattrin{'_name','_inst','_nparams','_paramspec_tvars'}:super().__setattr__(attr,val)else:setattr(self.__origin__,attr,val)def__instancecheck__(self,obj):returnself.__subclasscheck__(type(obj))def__subclasscheck__(self,cls):raiseTypeError("Subscripted generics cannot be used with"" class and instance checks")def__dir__(self):returnlist(set(super().__dir__()+[attrforattrindir(self.__origin__)ifnot_is_dunder(attr)]))# Special typing constructs Union, Optional, Generic, Callable and Tuple# use three special attributes for internal bookkeeping of generic types:# * __parameters__ is a tuple of unique free type parameters of a generic# type, for example, Dict[T, T].__parameters__ == (T,);# * __origin__ keeps a reference to a type that was subscripted,# e.g., Union[T, int].__origin__ == Union, or the non-generic version of# the type.# * __args__ is a tuple of all arguments used in subscripting,# e.g., Dict[T, int].__args__ == (T, int).class_GenericAlias(_BaseGenericAlias,_root=True):# The type of parameterized generics.## That is, for example, `type(List[int])` is `_GenericAlias`.## Objects which are instances of this class include:# * Parameterized container types, e.g. `Tuple[int]`, `List[int]`.# * Note that native container types, e.g. `tuple`, `list`, use# `types.GenericAlias` instead.# * Parameterized classes:# T = TypeVar('T')# class C(Generic[T]): pass# # C[int] is a _GenericAlias# * `Callable` aliases, generic `Callable` aliases, and# parameterized `Callable` aliases:# T = TypeVar('T')# # _CallableGenericAlias inherits from _GenericAlias.# A = Callable[[], None] # _CallableGenericAlias# B = Callable[[T], None] # _CallableGenericAlias# C = B[int] # _CallableGenericAlias# * Parameterized `Final`, `ClassVar` and `TypeGuard`:# # All _GenericAlias# Final[int]# ClassVar[float]# TypeVar[bool]def__init__(self,origin,args,*,inst=True,name=None,_paramspec_tvars=False):super().__init__(origin,inst=inst,name=name)ifnotisinstance(args,tuple):args=(args,)self.__args__=tuple(...ifais_TypingEllipsiselseaforainargs)self.__parameters__=_collect_parameters(args)self._paramspec_tvars=_paramspec_tvarsifnotname:self.__module__=origin.__module__def__eq__(self,other):ifnotisinstance(other,_GenericAlias):returnNotImplementedreturn(self.__origin__==other.__origin__andself.__args__==other.__args__)def__hash__(self):returnhash((self.__origin__,self.__args__))def__or__(self,right):returnUnion[self,right]def__ror__(self,left):returnUnion[left,self]@_tp_cachedef__getitem__(self,args):# Parameterizes an already-parameterized object.## For example, we arrive here doing something like:# T1 = TypeVar('T1')# T2 = TypeVar('T2')# T3 = TypeVar('T3')# class A(Generic[T1]): pass# B = A[T2] # B is a _GenericAlias# C = B[T3] # Invokes _GenericAlias.__getitem__## We also arrive here when parameterizing a generic `Callable` alias:# T = TypeVar('T')# C = Callable[[T], None]# C[int] # Invokes _GenericAlias.__getitem__ifself.__origin__in(Generic,Protocol):# Can't subscript Generic[...] or Protocol[...].raiseTypeError(f"Cannot subscript already-subscripted {self}")ifnotself.__parameters__:raiseTypeError(f"{self} is not a generic class")# Preprocess `args`.ifnotisinstance(args,tuple):args=(args,)args=tuple(_type_convert(p)forpinargs)args=_unpack_args(args)new_args=self._determine_new_args(args)r=self.copy_with(new_args)returnrdef_determine_new_args(self,args):# Determines new __args__ for __getitem__.## For example, suppose we had:# T1 = TypeVar('T1')# T2 = TypeVar('T2')# class A(Generic[T1, T2]): pass# T3 = TypeVar('T3')# B = A[int, T3]# C = B[str]# `B.__args__` is `(int, T3)`, so `C.__args__` should be `(int, str)`.# Unfortunately, this is harder than it looks, because if `T3` is# anything more exotic than a plain `TypeVar`, we need to consider# edge cases.params=self.__parameters__# In the example above, this would be {T3: str}forparaminparams:prepare=getattr(param,'__typing_prepare_subst__',None)ifprepareisnotNone:args=prepare(self,args)alen=len(args)plen=len(params)ifalen!=plen:raiseTypeError(f"Too {'many'ifalen>plenelse'few'} arguments for {self};"f" actual {alen}, expected {plen}")new_arg_by_param=dict(zip(params,args))returntuple(self._make_substitution(self.__args__,new_arg_by_param))def_make_substitution(self,args,new_arg_by_param):"""Create a list of new type arguments."""new_args=[]forold_arginargs:ifisinstance(old_arg,type):new_args.append(old_arg)continuesubstfunc=getattr(old_arg,'__typing_subst__',None)ifsubstfunc:new_arg=substfunc(new_arg_by_param[old_arg])else:subparams=getattr(old_arg,'__parameters__',())ifnotsubparams:new_arg=old_argelse:subargs=[]forxinsubparams:ifisinstance(x,TypeVarTuple):subargs.extend(new_arg_by_param[x])else:subargs.append(new_arg_by_param[x])new_arg=old_arg[tuple(subargs)]ifself.__origin__==collections.abc.Callableandisinstance(new_arg,tuple):# Consider the following `Callable`.# C = Callable[[int], str]# Here, `C.__args__` should be (int, str) - NOT ([int], str).# That means that if we had something like...# P = ParamSpec('P')# T = TypeVar('T')# C = Callable[P, T]# D = C[[int, str], float]# ...we need to be careful; `new_args` should end up as# `(int, str, float)` rather than `([int, str], float)`.new_args.extend(new_arg)elif_is_unpacked_typevartuple(old_arg):# Consider the following `_GenericAlias`, `B`:# class A(Generic[*Ts]): ...# B = A[T, *Ts]# If we then do:# B[float, int, str]# The `new_arg` corresponding to `T` will be `float`, and the# `new_arg` corresponding to `*Ts` will be `(int, str)`. We# should join all these types together in a flat list# `(float, int, str)` - so again, we should `extend`.new_args.extend(new_arg)elifisinstance(old_arg,tuple):# Corner case:# P = ParamSpec('P')# T = TypeVar('T')# class Base(Generic[P]): ...# Can be substituted like this:# X = Base[[int, T]]# In this case, `old_arg` will be a tuple:new_args.append(tuple(self._make_substitution(old_arg,new_arg_by_param)),)else:new_args.append(new_arg)returnnew_argsdefcopy_with(self,args):returnself.__class__(self.__origin__,args,name=self._name,inst=self._inst,_paramspec_tvars=self._paramspec_tvars)def__repr__(self):ifself._name:name='typing.'+self._nameelse:name=_type_repr(self.__origin__)ifself.__args__:args=", ".join([_type_repr(a)forainself.__args__])else:# To ensure the repr is eval-able.args="()"returnf'{name}[{args}]'def__reduce__(self):ifself._name:origin=globals()[self._name]else:origin=self.__origin__args=tuple(self.__args__)iflen(args)==1andnotisinstance(args[0],tuple):args,=argsreturnoperator.getitem,(origin,args)def__mro_entries__(self,bases):ifisinstance(self.__origin__,_SpecialForm):raiseTypeError(f"Cannot subclass {self!r}")ifself._name:# generic version of an ABC or built-in classreturnsuper().__mro_entries__(bases)ifself.__origin__isGeneric:ifProtocolinbases:return()i=bases.index(self)forbinbases[i+1:]:ifisinstance(b,_BaseGenericAlias)andbisnotself:return()return(self.__origin__,)def__iter__(self):yieldUnpack[self]# _nparams is the number of accepted parameters, e.g. 0 for Hashable,# 1 for List and 2 for Dict. It may be -1 if variable number of# parameters are accepted (needs custom __getitem__).class_SpecialGenericAlias(_NotIterable,_BaseGenericAlias,_root=True):def__init__(self,origin,nparams,*,inst=True,name=None):ifnameisNone:name=origin.__name__super().__init__(origin,inst=inst,name=name)self._nparams=nparamsiforigin.__module__=='builtins':self.__doc__=f'A generic version of {origin.__qualname__}.'else:self.__doc__=f'A generic version of {origin.__module__}.{origin.__qualname__}.'@_tp_cachedef__getitem__(self,params):ifnotisinstance(params,tuple):params=(params,)msg="Parameters to generic types must be types."params=tuple(_type_check(p,msg)forpinparams)_check_generic(self,params,self._nparams)returnself.copy_with(params)defcopy_with(self,params):return_GenericAlias(self.__origin__,params,name=self._name,inst=self._inst)def__repr__(self):return'typing.'+self._namedef__subclasscheck__(self,cls):ifisinstance(cls,_SpecialGenericAlias):returnissubclass(cls.__origin__,self.__origin__)ifnotisinstance(cls,_GenericAlias):returnissubclass(cls,self.__origin__)returnsuper().__subclasscheck__(cls)def__reduce__(self):returnself._namedef__or__(self,right):returnUnion[self,right]def__ror__(self,left):returnUnion[left,self]class_CallableGenericAlias(_NotIterable,_GenericAlias,_root=True):def__repr__(self):assertself._name=='Callable'args=self.__args__iflen(args)==2and_is_param_expr(args[0]):returnsuper().__repr__()return(f'typing.Callable'f'[[{", ".join([_type_repr(a)forainargs[:-1]])}], 'f'{_type_repr(args[-1])}]')def__reduce__(self):args=self.__args__ifnot(len(args)==2and_is_param_expr(args[0])):args=list(args[:-1]),args[-1]returnoperator.getitem,(Callable,args)class_CallableType(_SpecialGenericAlias,_root=True):defcopy_with(self,params):return_CallableGenericAlias(self.__origin__,params,name=self._name,inst=self._inst,_paramspec_tvars=True)def__getitem__(self,params):ifnotisinstance(params,tuple)orlen(params)!=2:raiseTypeError("Callable must be used as ""Callable[[arg, ...], result].")args,result=params# This relaxes what args can be on purpose to allow things like# PEP 612 ParamSpec. Responsibility for whether a user is using# Callable[...] properly is deferred to static type checkers.ifisinstance(args,list):params=(tuple(args),result)else:params=(args,result)returnself.__getitem_inner__(params)@_tp_cachedef__getitem_inner__(self,params):args,result=paramsmsg="Callable[args, result]: result must be a type."result=_type_check(result,msg)ifargsisEllipsis:returnself.copy_with((_TypingEllipsis,result))ifnotisinstance(args,tuple):args=(args,)args=tuple(_type_convert(arg)forarginargs)params=args+(result,)returnself.copy_with(params)class_TupleType(_SpecialGenericAlias,_root=True):@_tp_cachedef__getitem__(self,params):ifnotisinstance(params,tuple):params=(params,)iflen(params)>=2andparams[-1]is...:msg="Tuple[t, ...]: t must be a type."params=tuple(_type_check(p,msg)forpinparams[:-1])returnself.copy_with((*params,_TypingEllipsis))msg="Tuple[t0, t1, ...]: each t must be a type."params=tuple(_type_check(p,msg)forpinparams)returnself.copy_with(params)class_UnionGenericAlias(_NotIterable,_GenericAlias,_root=True):defcopy_with(self,params):returnUnion[params]def__eq__(self,other):ifnotisinstance(other,(_UnionGenericAlias,types.UnionType)):returnNotImplementedtry:# fast pathreturnset(self.__args__)==set(other.__args__)exceptTypeError:# not hashable, slow pathreturn_compare_args_orderless(self.__args__,other.__args__)def__hash__(self):returnhash(frozenset(self.__args__))def__repr__(self):args=self.__args__iflen(args)==2:ifargs[0]istype(None):returnf'typing.Optional[{_type_repr(args[1])}]'elifargs[1]istype(None):returnf'typing.Optional[{_type_repr(args[0])}]'returnsuper().__repr__()def__instancecheck__(self,obj):returnself.__subclasscheck__(type(obj))def__subclasscheck__(self,cls):forarginself.__args__:ifissubclass(cls,arg):returnTruedef__reduce__(self):func,(origin,args)=super().__reduce__()returnfunc,(Union,args)def_value_and_type_iter(parameters):return((p,type(p))forpinparameters)class_LiteralGenericAlias(_GenericAlias,_root=True):def__eq__(self,other):ifnotisinstance(other,_LiteralGenericAlias):returnNotImplementedreturnset(_value_and_type_iter(self.__args__))==set(_value_and_type_iter(other.__args__))def__hash__(self):returnhash(frozenset(_value_and_type_iter(self.__args__)))class_ConcatenateGenericAlias(_GenericAlias,_root=True):defcopy_with(self,params):ifisinstance(params[-1],(list,tuple)):return(*params[:-1],*params[-1])ifisinstance(params[-1],_ConcatenateGenericAlias):params=(*params[:-1],*params[-1].__args__)returnsuper().copy_with(params)@_SpecialFormdefUnpack(self,parameters):"""Type unpack operator. The type unpack operator takes the child types from some container type, such as `tuple[int, str]` or a `TypeVarTuple`, and 'pulls them out'. For example:: # For some generic class `Foo`: Foo[Unpack[tuple[int, str]]] # Equivalent to Foo[int, str] Ts = TypeVarTuple('Ts') # Specifies that `Bar` is generic in an arbitrary number of types. # (Think of `Ts` as a tuple of an arbitrary number of individual # `TypeVar`s, which the `Unpack` is 'pulling out' directly into the # `Generic[]`.) class Bar(Generic[Unpack[Ts]]): ... Bar[int] # Valid Bar[int, str] # Also valid From Python 3.11, this can also be done using the `*` operator:: Foo[*tuple[int, str]] class Bar(Generic[*Ts]): ... Note that there is only some runtime checking of this operator. Not everything the runtime allows may be accepted by static type checkers. For more information, see PEP 646. """item=_type_check(parameters,f'{self} accepts only single type.')return_UnpackGenericAlias(origin=self,args=(item,))class_UnpackGenericAlias(_GenericAlias,_root=True):def__repr__(self):# `Unpack` only takes one argument, so __args__ should contain only# a single item.return'*'+repr(self.__args__[0])def__getitem__(self,args):ifself.__typing_is_unpacked_typevartuple__:returnargsreturnsuper().__getitem__(args)@propertydef__typing_unpacked_tuple_args__(self):assertself.__origin__isUnpackassertlen(self.__args__)==1arg,=self.__args__ifisinstance(arg,_GenericAlias):assertarg.__origin__istuplereturnarg.__args__returnNone@propertydef__typing_is_unpacked_typevartuple__(self):assertself.__origin__isUnpackassertlen(self.__args__)==1returnisinstance(self.__args__[0],TypeVarTuple)classGeneric:"""Abstract base class for generic types. A generic type is typically declared by inheriting from this class parameterized with one or more type variables. For example, a generic mapping type might be defined as:: class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc. This class can then be used as follows:: def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: try: return mapping[key] except KeyError: return default """__slots__=()_is_protocol=False@_tp_cachedef__class_getitem__(cls,params):"""Parameterizes a generic class. At least, parameterizing a generic class is the *main* thing this method does. For example, for some generic class `Foo`, this is called when we do `Foo[int]` - there, with `cls=Foo` and `params=int`. However, note that this method is also called when defining generic classes in the first place with `class Foo(Generic[T]): ...`. """ifnotisinstance(params,tuple):params=(params,)params=tuple(_type_convert(p)forpinparams)ifclsin(Generic,Protocol):# Generic and Protocol can only be subscripted with unique type variables.ifnotparams:raiseTypeError(f"Parameter list to {cls.__qualname__}[...] cannot be empty")ifnotall(_is_typevar_like(p)forpinparams):raiseTypeError(f"Parameters to {cls.__name__}[...] must all be type variables "f"or parameter specification variables.")iflen(set(params))!=len(params):raiseTypeError(f"Parameters to {cls.__name__}[...] must all be unique")else:# Subscripting a regular Generic subclass.forparamincls.__parameters__:prepare=getattr(param,'__typing_prepare_subst__',None)ifprepareisnotNone:params=prepare(cls,params)_check_generic(cls,params,len(cls.__parameters__))new_args=[]forparam,new_arginzip(cls.__parameters__,params):ifisinstance(param,TypeVarTuple):new_args.extend(new_arg)else:new_args.append(new_arg)params=tuple(new_args)return_GenericAlias(cls,params,_paramspec_tvars=True)def__init_subclass__(cls,*args,**kwargs):super().__init_subclass__(*args,**kwargs)tvars=[]if'__orig_bases__'incls.__dict__:error=Genericincls.__orig_bases__else:error=(Genericincls.__bases__andcls.__name__!='Protocol'andtype(cls)!=_TypedDictMeta)iferror:raiseTypeError("Cannot inherit from plain Generic")if'__orig_bases__'incls.__dict__:tvars=_collect_parameters(cls.__orig_bases__)# Look for Generic[T1, ..., Tn].# If found, tvars must be a subset of it.# If not found, tvars is it.# Also check for and reject plain Generic,# and reject multiple Generic[...].gvars=Noneforbaseincls.__orig_bases__:if(isinstance(base,_GenericAlias)andbase.__origin__isGeneric):ifgvarsisnotNone:raiseTypeError("Cannot inherit from Generic[...] multiple times.")gvars=base.__parameters__ifgvarsisnotNone:tvarset=set(tvars)gvarset=set(gvars)ifnottvarset<=gvarset:s_vars=', '.join(str(t)fortintvarsiftnotingvarset)s_args=', '.join(str(g)forgingvars)raiseTypeError(f"Some type variables ({s_vars}) are"f" not listed in Generic[{s_args}]")tvars=gvarscls.__parameters__=tuple(tvars)class_TypingEllipsis:"""Internal placeholder for ... (ellipsis)."""_TYPING_INTERNALS=['__parameters__','__orig_bases__','__orig_class__','_is_protocol','_is_runtime_protocol','__final__']_SPECIAL_NAMES=['__abstractmethods__','__annotations__','__dict__','__doc__','__init__','__module__','__new__','__slots__','__subclasshook__','__weakref__','__class_getitem__']# These special attributes will be not collected as protocol members.EXCLUDED_ATTRIBUTES=_TYPING_INTERNALS+_SPECIAL_NAMES+['_MutableMapping__marker']def_get_protocol_attrs(cls):"""Collect protocol members from a protocol class objects. This includes names actually defined in the class dictionary, as well as names that appear in annotations. Special names (above) are skipped. """attrs=set()forbaseincls.__mro__[:-1]:# without objectifbase.__name__in('Protocol','Generic'):continueannotations=getattr(base,'__annotations__',{})forattrinlist(base.__dict__.keys())+list(annotations.keys()):ifnotattr.startswith('_abc_')andattrnotinEXCLUDED_ATTRIBUTES:attrs.add(attr)returnattrsdef_is_callable_members_only(cls):# PEP 544 prohibits using issubclass() with protocols that have non-method members.returnall(callable(getattr(cls,attr,None))forattrin_get_protocol_attrs(cls))def_no_init_or_replace_init(self,*args,**kwargs):cls=type(self)ifcls._is_protocol:raiseTypeError('Protocols cannot be instantiated')# Already using a custom `__init__`. No need to calculate correct# `__init__` to call. This can lead to RecursionError. See bpo-45121.ifcls.__init__isnot_no_init_or_replace_init:return# Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`.# The first instantiation of the subclass will call `_no_init_or_replace_init` which# searches for a proper new `__init__` in the MRO. The new `__init__`# replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent# instantiation of the protocol subclass will thus use the new# `__init__` and no longer call `_no_init_or_replace_init`.forbaseincls.__mro__:init=base.__dict__.get('__init__',_no_init_or_replace_init)ifinitisnot_no_init_or_replace_init:cls.__init__=initbreakelse:# should not happencls.__init__=object.__init__cls.__init__(self,*args,**kwargs)def_caller(depth=1,default='__main__'):try:returnsys._getframe(depth+1).f_globals.get('__name__',default)except(AttributeError,ValueError):# For platforms without _getframe()returnNonedef_allow_reckless_class_checks(depth=3):"""Allow instance and class checks for special stdlib modules. The abc and functools modules indiscriminately call isinstance() and issubclass() on the whole MRO of a user class, which may contain protocols. """return_caller(depth)in{'abc','functools',None}_PROTO_ALLOWLIST={'collections.abc':['Callable','Awaitable','Iterable','Iterator','AsyncIterable','Hashable','Sized','Container','Collection','Reversible',],'contextlib':['AbstractContextManager','AbstractAsyncContextManager'],}class_ProtocolMeta(ABCMeta):# This metaclass is really unfortunate and exists only because of# the lack of __instancehook__.def__instancecheck__(cls,instance):# We need this method for situations where attributes are# assigned in __init__.if(getattr(cls,'_is_protocol',False)andnotgetattr(cls,'_is_runtime_protocol',False)andnot_allow_reckless_class_checks(depth=2)):raiseTypeError("Instance and class checks can only be used with"" @runtime_checkable protocols")if((notgetattr(cls,'_is_protocol',False)or_is_callable_members_only(cls))andissubclass(instance.__class__,cls)):returnTrueifcls._is_protocol:ifall(hasattr(instance,attr)and# All *methods* can be blocked by setting them to None.(notcallable(getattr(cls,attr,None))orgetattr(instance,attr)isnotNone)forattrin_get_protocol_attrs(cls)):returnTruereturnsuper().__instancecheck__(instance)classProtocol(Generic,metaclass=_ProtocolMeta):"""Base class for protocol classes. Protocol classes are defined as:: class Proto(Protocol): def meth(self) -> int: ... Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing). For example:: class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:: class GenProto(Protocol[T]): def meth(self) -> T: ... """__slots__=()_is_protocol=True_is_runtime_protocol=Falsedef__init_subclass__(cls,*args,**kwargs):super().__init_subclass__(*args,**kwargs)# Determine if this is a protocol or a concrete subclass.ifnotcls.__dict__.get('_is_protocol',False):cls._is_protocol=any(bisProtocolforbincls.__bases__)# Set (or override) the protocol subclass hook.def_proto_hook(other):ifnotcls.__dict__.get('_is_protocol',False):returnNotImplemented# First, perform various sanity checks.ifnotgetattr(cls,'_is_runtime_protocol',False):if_allow_reckless_class_checks():returnNotImplementedraiseTypeError("Instance and class checks can only be used with"" @runtime_checkable protocols")ifnot_is_callable_members_only(cls):if_allow_reckless_class_checks():returnNotImplementedraiseTypeError("Protocols with non-method members"" don't support issubclass()")ifnotisinstance(other,type):# Same error message as for issubclass(1, int).raiseTypeError('issubclass() arg 1 must be a class')# Second, perform the actual structural compatibility check.forattrin_get_protocol_attrs(cls):forbaseinother.__mro__:# Check if the members appears in the class dictionary...ifattrinbase.__dict__:ifbase.__dict__[attr]isNone:returnNotImplementedbreak# ...or in annotations, if it is a sub-protocol.annotations=getattr(base,'__annotations__',{})if(isinstance(annotations,collections.abc.Mapping)andattrinannotationsandissubclass(other,Generic)andother._is_protocol):breakelse:returnNotImplementedreturnTrueif'__subclasshook__'notincls.__dict__:cls.__subclasshook__=_proto_hook# We have nothing more to do for non-protocols...ifnotcls._is_protocol:return# ... otherwise check consistency of bases, and prohibit instantiation.forbaseincls.__bases__:ifnot(basein(object,Generic)orbase.__module__in_PROTO_ALLOWLISTandbase.__name__in_PROTO_ALLOWLIST[base.__module__]orissubclass(base,Generic)andbase._is_protocol):raiseTypeError('Protocols can only inherit from other'' protocols, got %r'%base)ifcls.__init__isProtocol.__init__:cls.__init__=_no_init_or_replace_initclass_AnnotatedAlias(_NotIterable,_GenericAlias,_root=True):"""Runtime representation of an annotated type. At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't' with extra annotations. The alias behaves like a normal typing alias. Instantiating is the same as instantiating the underlying type; binding it to types is also the same. The metadata itself is stored in a '__metadata__' attribute as a tuple. """def__init__(self,origin,metadata):ifisinstance(origin,_AnnotatedAlias):metadata=origin.__metadata__+metadataorigin=origin.__origin__super().__init__(origin,origin)self.__metadata__=metadatadefcopy_with(self,params):assertlen(params)==1new_type=params[0]return_AnnotatedAlias(new_type,self.__metadata__)def__repr__(self):return"typing.Annotated[{}, {}]".format(_type_repr(self.__origin__),", ".join(repr(a)forainself.__metadata__))def__reduce__(self):returnoperator.getitem,(Annotated,(self.__origin__,)+self.__metadata__)def__eq__(self,other):ifnotisinstance(other,_AnnotatedAlias):returnNotImplementedreturn(self.__origin__==other.__origin__andself.__metadata__==other.__metadata__)def__hash__(self):returnhash((self.__origin__,self.__metadata__))def__getattr__(self,attr):ifattrin{'__name__','__qualname__'}:return'Annotated'returnsuper().__getattr__(attr)classAnnotated:"""Add context-specific metadata to a type. Example: Annotated[int, runtime_check.Unsigned] indicates to the hypothetical runtime_check module that this type is an unsigned int. Every other consumer of this type can ignore this metadata and treat this type as int. The first argument to Annotated must be a valid type. Details: - It's an error to call `Annotated` with less than two arguments. - Access the metadata via the ``__metadata__`` attribute:: assert Annotated[int, '$'].__metadata__ == ('$',) - Nested Annotated types are flattened:: assert Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3] - Instantiating an annotated type is equivalent to instantiating the underlying type:: assert Annotated[C, Ann1](5) == C(5) - Annotated can be used as a generic type alias:: Optimized: TypeAlias = Annotated[T, runtime.Optimize()] assert Optimized[int] == Annotated[int, runtime.Optimize()] OptimizedList: TypeAlias = Annotated[list[T], runtime.Optimize()] assert OptimizedList[int] == Annotated[list[int], runtime.Optimize()] - Annotated cannot be used with an unpacked TypeVarTuple:: Variadic: TypeAlias = Annotated[*Ts, Ann1] # NOT valid This would be equivalent to:: Annotated[T1, T2, T3, ..., Ann1] where T1, T2 etc. are TypeVars, which would be invalid, because only one type should be passed to Annotated. """__slots__=()def__new__(cls,*args,**kwargs):raiseTypeError("Type Annotated cannot be instantiated.")def__class_getitem__(cls,params):ifnotisinstance(params,tuple):params=(params,)returncls._class_getitem_inner(cls,*params)@_tp_cache(typed=True)def_class_getitem_inner(cls,*params):iflen(params)<2:raiseTypeError("Annotated[...] should be used ""with at least two arguments (a type and an ""annotation).")if_is_unpacked_typevartuple(params[0]):raiseTypeError("Annotated[...] should not be used with an ""unpacked TypeVarTuple")msg="Annotated[t, ...]: t must be a type."origin=_type_check(params[0],msg,allow_special_forms=True)metadata=tuple(params[1:])return_AnnotatedAlias(origin,metadata)def__init_subclass__(cls,*args,**kwargs):raiseTypeError("Cannot subclass {}.Annotated".format(cls.__module__))defruntime_checkable(cls):"""Mark a protocol class as a runtime protocol. Such protocol can be used with isinstance() and issubclass(). Raise TypeError if applied to a non-protocol class. This allows a simple-minded structural check very similar to one trick ponies in collections.abc such as Iterable. For example:: @runtime_checkable class Closable(Protocol): def close(self): ... assert isinstance(open('/some/file'), Closable) Warning: this will check only the presence of the required methods, not their type signatures! """ifnotissubclass(cls,Generic)ornotcls._is_protocol:raiseTypeError('@runtime_checkable can be only applied to protocol classes,'' got %r'%cls)cls._is_runtime_protocol=Truereturnclsdefcast(typ,val):"""Cast a value to a type. This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don't check anything (we want this to be as fast as possible). """returnvaldefassert_type(val,typ,/):"""Ask a static type checker to confirm that the value is of the given type. At runtime this does nothing: it returns the first argument unchanged with no checks or side effects, no matter the actual type of the argument. When a static type checker encounters a call to assert_type(), it emits an error if the value is not of the specified type:: def greet(name: str) -> None: assert_type(name, str) # OK assert_type(name, int) # type checker error """returnval_allowed_types=(types.FunctionType,types.BuiltinFunctionType,types.MethodType,types.ModuleType,WrapperDescriptorType,MethodWrapperType,MethodDescriptorType)defget_type_hints(obj,globalns=None,localns=None,include_extras=False):"""Return type hints for an object. This is often the same as obj.__annotations__, but it handles forward references encoded as string literals and recursively replaces all 'Annotated[T, ...]' with 'T' (unless 'include_extras=True'). The argument may be a module, class, method, or function. The annotations are returned as a dictionary. For classes, annotations include also inherited members. TypeError is raised if the argument is not of a type that can contain annotations, and an empty dictionary is returned if no annotations are present. BEWARE -- the behavior of globalns and localns is counterintuitive (unless you are familiar with how eval() and exec() work). The search order is locals first, then globals. - If no dict arguments are passed, an attempt is made to use the globals from obj (or the respective module's globals for classes), and these are also used as the locals. If the object does not appear to have globals, an empty dictionary is used. For classes, the search order is globals first then locals. - If one dict argument is passed, it is used for both globals and locals. - If two dict arguments are passed, they specify globals and locals, respectively. """ifgetattr(obj,'__no_type_check__',None):return{}# Classes require a special treatment.ifisinstance(obj,type):hints={}forbaseinreversed(obj.__mro__):ifglobalnsisNone:base_globals=getattr(sys.modules.get(base.__module__,None),'__dict__',{})else:base_globals=globalnsann=base.__dict__.get('__annotations__',{})ifisinstance(ann,types.GetSetDescriptorType):ann={}base_locals=dict(vars(base))iflocalnsisNoneelselocalnsiflocalnsisNoneandglobalnsisNone:# This is surprising, but required. Before Python 3.10,# get_type_hints only evaluated the globalns of# a class. To maintain backwards compatibility, we reverse# the globalns and localns order so that eval() looks into# *base_globals* first rather than *base_locals*.# This only affects ForwardRefs.base_globals,base_locals=base_locals,base_globalsforname,valueinann.items():ifvalueisNone:value=type(None)ifisinstance(value,str):value=ForwardRef(value,is_argument=False,is_class=True)value=_eval_type(value,base_globals,base_locals)hints[name]=valuereturnhintsifinclude_extraselse{k:_strip_annotations(t)fork,tinhints.items()}ifglobalnsisNone:ifisinstance(obj,types.ModuleType):globalns=obj.__dict__else:nsobj=obj# Find globalns for the unwrapped object.whilehasattr(nsobj,'__wrapped__'):nsobj=nsobj.__wrapped__globalns=getattr(nsobj,'__globals__',{})iflocalnsisNone:localns=globalnseliflocalnsisNone:localns=globalnshints=getattr(obj,'__annotations__',None)ifhintsisNone:# Return empty annotations for something that _could_ have them.ifisinstance(obj,_allowed_types):return{}else:raiseTypeError('{!r} is not a module, class, method, ''or function.'.format(obj))hints=dict(hints)forname,valueinhints.items():ifvalueisNone:value=type(None)ifisinstance(value,str):# class-level forward refs were handled above, this must be either# a module-level annotation or a function argument annotationvalue=ForwardRef(value,is_argument=notisinstance(obj,types.ModuleType),is_class=False,)hints[name]=_eval_type(value,globalns,localns)returnhintsifinclude_extraselse{k:_strip_annotations(t)fork,tinhints.items()}def_strip_annotations(t):"""Strip the annotations from a given type."""ifisinstance(t,_AnnotatedAlias):return_strip_annotations(t.__origin__)ifhasattr(t,"__origin__")andt.__origin__in(Required,NotRequired):return_strip_annotations(t.__args__[0])ifisinstance(t,_GenericAlias):stripped_args=tuple(_strip_annotations(a)foraint.__args__)ifstripped_args==t.__args__:returntreturnt.copy_with(stripped_args)ifisinstance(t,GenericAlias):stripped_args=tuple(_strip_annotations(a)foraint.__args__)ifstripped_args==t.__args__:returntreturnGenericAlias(t.__origin__,stripped_args)ifisinstance(t,types.UnionType):stripped_args=tuple(_strip_annotations(a)foraint.__args__)ifstripped_args==t.__args__:returntreturnfunctools.reduce(operator.or_,stripped_args)returntdefget_origin(tp):"""Get the unsubscripted version of a type. This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar, Annotated, and others. Return None for unsupported types. Examples:: >>> P = ParamSpec('P') >>> assert get_origin(Literal[42]) is Literal >>> assert get_origin(int) is None >>> assert get_origin(ClassVar[int]) is ClassVar >>> assert get_origin(Generic) is Generic >>> assert get_origin(Generic[T]) is Generic >>> assert get_origin(Union[T, int]) is Union >>> assert get_origin(List[Tuple[T, T]][int]) is list >>> assert get_origin(P.args) is P """ifisinstance(tp,_AnnotatedAlias):returnAnnotatedifisinstance(tp,(_BaseGenericAlias,GenericAlias,ParamSpecArgs,ParamSpecKwargs)):returntp.__origin__iftpisGeneric:returnGenericifisinstance(tp,types.UnionType):returntypes.UnionTypereturnNonedefget_args(tp):"""Get type arguments with all substitutions performed. For unions, basic simplifications used by Union constructor are performed. Examples:: >>> T = TypeVar('T') >>> assert get_args(Dict[str, int]) == (str, int) >>> assert get_args(int) == () >>> assert get_args(Union[int, Union[T, int], str][int]) == (int, str) >>> assert get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int]) >>> assert get_args(Callable[[], T][int]) == ([], int) """ifisinstance(tp,_AnnotatedAlias):return(tp.__origin__,)+tp.__metadata__ifisinstance(tp,(_GenericAlias,GenericAlias)):res=tp.__args__if_should_unflatten_callable_args(tp,res):res=(list(res[:-1]),res[-1])returnresifisinstance(tp,types.UnionType):returntp.__args__return()defis_typeddict(tp):"""Check if an annotation is a TypedDict class. For example:: >>> from typing import TypedDict >>> class Film(TypedDict): ... title: str ... year: int ... >>> is_typeddict(Film) True >>> is_typeddict(dict) False """returnisinstance(tp,_TypedDictMeta)_ASSERT_NEVER_REPR_MAX_LENGTH=100defassert_never(arg:Never,/)->Never:"""Statically assert that a line of code is unreachable. Example:: def int_or_str(arg: int | str) -> None: match arg: case int(): print("It's an int") case str(): print("It's a str") case _: assert_never(arg) If a type checker finds that a call to assert_never() is reachable, it will emit an error. At runtime, this throws an exception when called. """value=repr(arg)iflen(value)>_ASSERT_NEVER_REPR_MAX_LENGTH:value=value[:_ASSERT_NEVER_REPR_MAX_LENGTH]+'...'raiseAssertionError(f"Expected code to be unreachable, but got: {value}")defno_type_check(arg):"""Decorator to indicate that annotations are not type hints. The argument must be a class or function; if it is a class, it applies recursively to all methods and classes defined in that class (but not to methods defined in its superclasses or subclasses). This mutates the function(s) or class(es) in place. """ifisinstance(arg,type):forkeyindir(arg):obj=getattr(arg,key)if(nothasattr(obj,'__qualname__')orobj.__qualname__!=f'{arg.__qualname__}.{obj.__name__}'orgetattr(obj,'__module__',None)!=arg.__module__):# We only modify objects that are defined in this type directly.# If classes / methods are nested in multiple layers,# we will modify them when processing their direct holders.continue# Instance, class, and static methods:ifisinstance(obj,types.FunctionType):obj.__no_type_check__=Trueifisinstance(obj,types.MethodType):obj.__func__.__no_type_check__=True# Nested types:ifisinstance(obj,type):no_type_check(obj)try:arg.__no_type_check__=TrueexceptTypeError:# built-in classespassreturnargdefno_type_check_decorator(decorator):"""Decorator to give another decorator the @no_type_check effect. This wraps the decorator with something that wraps the decorated function in @no_type_check. """@functools.wraps(decorator)defwrapped_decorator(*args,**kwds):func=decorator(*args,**kwds)func=no_type_check(func)returnfuncreturnwrapped_decoratordef_overload_dummy(*args,**kwds):"""Helper for @overload to raise when called."""raiseNotImplementedError("You should not call an overloaded function. ""A series of @overload-decorated functions ""outside a stub module should always be followed ""by an implementation that is not @overload-ed.")# {module: {qualname: {firstlineno: func}}}_overload_registry=defaultdict(functools.partial(defaultdict,dict))defoverload(func):"""Decorator for overloaded functions/methods. In a stub file, place two or more stub definitions for the same function in a row, each decorated with @overload. For example:: @overload def utf8(value: None) -> None: ... @overload def utf8(value: bytes) -> bytes: ... @overload def utf8(value: str) -> bytes: ... In a non-stub file (i.e. a regular .py file), do the same but follow it with an implementation. The implementation should *not* be decorated with @overload:: @overload def utf8(value: None) -> None: ... @overload def utf8(value: bytes) -> bytes: ... @overload def utf8(value: str) -> bytes: ... def utf8(value): ... # implementation goes here The overloads for a function can be retrieved at runtime using the get_overloads() function. """# classmethod and staticmethodf=getattr(func,"__func__",func)try:_overload_registry[f.__module__][f.__qualname__][f.__code__.co_firstlineno]=funcexceptAttributeError:# Not a normal function; ignore.passreturn_overload_dummydefget_overloads(func):"""Return all defined overloads for *func* as a sequence."""# classmethod and staticmethodf=getattr(func,"__func__",func)iff.__module__notin_overload_registry:return[]mod_dict=_overload_registry[f.__module__]iff.__qualname__notinmod_dict:return[]returnlist(mod_dict[f.__qualname__].values())defclear_overloads():"""Clear all overloads in the registry."""_overload_registry.clear()deffinal(f):"""Decorator to indicate final methods and final classes. Use this decorator to indicate to type checkers that the decorated method cannot be overridden, and decorated class cannot be subclassed. For example:: class Base: @final def done(self) -> None: ... class Sub(Base): def done(self) -> None: # Error reported by type checker ... @final class Leaf: ... class Other(Leaf): # Error reported by type checker ... There is no runtime checking of these properties. The decorator attempts to set the ``__final__`` attribute to ``True`` on the decorated object to allow runtime introspection. """try:f.__final__=Trueexcept(AttributeError,TypeError):# Skip the attribute silently if it is not writable.# AttributeError happens if the object has __slots__ or a# read-only property, TypeError if it's a builtin class.passreturnf# Some unconstrained type variables. These are used by the container types.# (These are not for export.)T=TypeVar('T')# Any type.KT=TypeVar('KT')# Key type.VT=TypeVar('VT')# Value type.T_co=TypeVar('T_co',covariant=True)# Any type covariant containers.V_co=TypeVar('V_co',covariant=True)# Any type covariant containers.VT_co=TypeVar('VT_co',covariant=True)# Value type covariant containers.T_contra=TypeVar('T_contra',contravariant=True)# Ditto contravariant.# Internal type variable used for Type[].CT_co=TypeVar('CT_co',covariant=True,bound=type)# A useful type variable with constraints. This represents string types.# (This one *is* for export!)AnyStr=TypeVar('AnyStr',bytes,str)# Various ABCs mimicking those in collections.abc._alias=_SpecialGenericAliasHashable=_alias(collections.abc.Hashable,0)# Not generic.Awaitable=_alias(collections.abc.Awaitable,1)Coroutine=_alias(collections.abc.Coroutine,3)AsyncIterable=_alias(collections.abc.AsyncIterable,1)AsyncIterator=_alias(collections.abc.AsyncIterator,1)Iterable=_alias(collections.abc.Iterable,1)Iterator=_alias(collections.abc.Iterator,1)Reversible=_alias(collections.abc.Reversible,1)Sized=_alias(collections.abc.Sized,0)# Not generic.Container=_alias(collections.abc.Container,1)Collection=_alias(collections.abc.Collection,1)Callable=_CallableType(collections.abc.Callable,2)Callable.__doc__= \
"""Deprecated alias to collections.abc.Callable. Callable[[int], str] signifies a function that takes a single parameter of type int and returns a str. The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types, a ParamSpec, Concatenate or ellipsis. The return type must be a single type. There is no syntax to indicate optional or keyword arguments; such function types are rarely used as callback types. """AbstractSet=_alias(collections.abc.Set,1,name='AbstractSet')MutableSet=_alias(collections.abc.MutableSet,1)# NOTE: Mapping is only covariant in the value type.Mapping=_alias(collections.abc.Mapping,2)MutableMapping=_alias(collections.abc.MutableMapping,2)Sequence=_alias(collections.abc.Sequence,1)MutableSequence=_alias(collections.abc.MutableSequence,1)ByteString=_alias(collections.abc.ByteString,0)# Not generic# Tuple accepts variable number of parameters.Tuple=_TupleType(tuple,-1,inst=False,name='Tuple')Tuple.__doc__= \
"""Deprecated alias to builtins.tuple. Tuple[X, Y] is the cross-product type of X and Y. Example: Tuple[T1, T2] is a tuple of two elements corresponding to type variables T1 and T2. Tuple[int, float, str] is a tuple of an int, a float and a string. To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. """List=_alias(list,1,inst=False,name='List')Deque=_alias(collections.deque,1,name='Deque')Set=_alias(set,1,inst=False,name='Set')FrozenSet=_alias(frozenset,1,inst=False,name='FrozenSet')MappingView=_alias(collections.abc.MappingView,1)KeysView=_alias(collections.abc.KeysView,1)ItemsView=_alias(collections.abc.ItemsView,2)ValuesView=_alias(collections.abc.ValuesView,1)ContextManager=_alias(contextlib.AbstractContextManager,1,name='ContextManager')AsyncContextManager=_alias(contextlib.AbstractAsyncContextManager,1,name='AsyncContextManager')Dict=_alias(dict,2,inst=False,name='Dict')DefaultDict=_alias(collections.defaultdict,2,name='DefaultDict')OrderedDict=_alias(collections.OrderedDict,2)Counter=_alias(collections.Counter,1)ChainMap=_alias(collections.ChainMap,2)Generator=_alias(collections.abc.Generator,3)AsyncGenerator=_alias(collections.abc.AsyncGenerator,2)Type=_alias(type,1,inst=False,name='Type')Type.__doc__= \
"""Deprecated alias to builtins.type. builtins.type or typing.Type can be used to annotate class objects. For example, suppose we have the following classes:: class User: ... # Abstract base for User classes class BasicUser(User): ... class ProUser(User): ... class TeamUser(User): ... And a function that takes a class argument that's a subclass of User and returns an instance of the corresponding class:: U = TypeVar('U', bound=User) def new_user(user_class: Type[U]) -> U: user = user_class() # (Here we could write the user object to a database) return user joe = new_user(BasicUser) At this point the type checker knows that joe has type BasicUser. """@runtime_checkableclassSupportsInt(Protocol):"""An ABC with one abstract method __int__."""__slots__=()@abstractmethoddef__int__(self)->int:pass@runtime_checkableclassSupportsFloat(Protocol):"""An ABC with one abstract method __float__."""__slots__=()@abstractmethoddef__float__(self)->float:pass@runtime_checkableclassSupportsComplex(Protocol):"""An ABC with one abstract method __complex__."""__slots__=()@abstractmethoddef__complex__(self)->complex:pass@runtime_checkableclassSupportsBytes(Protocol):"""An ABC with one abstract method __bytes__."""__slots__=()@abstractmethoddef__bytes__(self)->bytes:pass@runtime_checkableclassSupportsIndex(Protocol):"""An ABC with one abstract method __index__."""__slots__=()@abstractmethoddef__index__(self)->int:pass@runtime_checkableclassSupportsAbs(Protocol[T_co]):"""An ABC with one abstract method __abs__ that is covariant in its return type."""__slots__=()@abstractmethoddef__abs__(self)->T_co:pass@runtime_checkableclassSupportsRound(Protocol[T_co]):"""An ABC with one abstract method __round__ that is covariant in its return type."""__slots__=()@abstractmethoddef__round__(self,ndigits:int=0)->T_co:passdef_make_nmtuple(name,types,module,defaults=()):fields=[nforn,tintypes]types={n:_type_check(t,f"field {n} annotation must be a type")forn,tintypes}nm_tpl=collections.namedtuple(name,fields,defaults=defaults,module=module)nm_tpl.__annotations__=nm_tpl.__new__.__annotations__=typesreturnnm_tpl# attributes prohibited to set in NamedTuple class syntax_prohibited=frozenset({'__new__','__init__','__slots__','__getnewargs__','_fields','_field_defaults','_make','_replace','_asdict','_source'})_special=frozenset({'__module__','__name__','__annotations__'})classNamedTupleMeta(type):def__new__(cls,typename,bases,ns):assert_NamedTupleinbasesforbaseinbases:ifbaseisnot_NamedTupleandbaseisnotGeneric:raiseTypeError('can only inherit from a NamedTuple type and Generic')bases=tuple(tupleifbaseis_NamedTupleelsebaseforbaseinbases)types=ns.get('__annotations__',{})default_names=[]forfield_nameintypes:iffield_nameinns:default_names.append(field_name)elifdefault_names:raiseTypeError(f"Non-default namedtuple field {field_name} "f"cannot follow default field"f"{'s'iflen(default_names)>1else''} "f"{', '.join(default_names)}")nm_tpl=_make_nmtuple(typename,types.items(),defaults=[ns[n]fornindefault_names],module=ns['__module__'])nm_tpl.__bases__=basesifGenericinbases:class_getitem=Generic.__class_getitem__.__func__nm_tpl.__class_getitem__=classmethod(class_getitem)# update from user namespace without overriding special namedtuple attributesforkeyinns:ifkeyin_prohibited:raiseAttributeError("Cannot overwrite NamedTuple attribute "+key)elifkeynotin_specialandkeynotinnm_tpl._fields:setattr(nm_tpl,key,ns[key])ifGenericinbases:nm_tpl.__init_subclass__()returnnm_tpldefNamedTuple(typename,fields=None,/,**kwargs):"""Typed version of namedtuple. Usage:: class Employee(NamedTuple): name: str id: int This is equivalent to:: Employee = collections.namedtuple('Employee', ['name', 'id']) The resulting class has an extra __annotations__ attribute, giving a dict that maps field names to types. (The field names are also in the _fields attribute, which is part of the namedtuple API.) An alternative equivalent functional syntax is also accepted:: Employee = NamedTuple('Employee', [('name', str), ('id', int)]) """iffieldsisNone:fields=kwargs.items()elifkwargs:raiseTypeError("Either list of fields or keywords"" can be provided to NamedTuple, not both")return_make_nmtuple(typename,fields,module=_caller())_NamedTuple=type.__new__(NamedTupleMeta,'NamedTuple',(),{})def_namedtuple_mro_entries(bases):assertNamedTupleinbasesreturn(_NamedTuple,)NamedTuple.__mro_entries__=_namedtuple_mro_entriesclass_TypedDictMeta(type):def__new__(cls,name,bases,ns,total=True):"""Create a new typed dict class object. This method is called when TypedDict is subclassed, or when TypedDict is instantiated. This way TypedDict supports all three syntax forms described in its docstring. Subclasses and instances of TypedDict return actual dictionaries. """forbaseinbases:iftype(base)isnot_TypedDictMetaandbaseisnotGeneric:raiseTypeError('cannot inherit from both a TypedDict type ''and a non-TypedDict base class')ifany(issubclass(b,Generic)forbinbases):generic_base=(Generic,)else:generic_base=()tp_dict=type.__new__(_TypedDictMeta,name,(*generic_base,dict),ns)annotations={}own_annotations=ns.get('__annotations__',{})msg="TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"own_annotations={n:_type_check(tp,msg,module=tp_dict.__module__)forn,tpinown_annotations.items()}required_keys=set()optional_keys=set()forbaseinbases:annotations.update(base.__dict__.get('__annotations__',{}))base_required=base.__dict__.get('__required_keys__',set())required_keys|=base_requiredoptional_keys-=base_requiredbase_optional=base.__dict__.get('__optional_keys__',set())required_keys-=base_optionaloptional_keys|=base_optionalannotations.update(own_annotations)forannotation_key,annotation_typeinown_annotations.items():annotation_origin=get_origin(annotation_type)ifannotation_originisAnnotated:annotation_args=get_args(annotation_type)ifannotation_args:annotation_type=annotation_args[0]annotation_origin=get_origin(annotation_type)ifannotation_originisRequired:is_required=Trueelifannotation_originisNotRequired:is_required=Falseelse:is_required=totalifis_required:required_keys.add(annotation_key)optional_keys.discard(annotation_key)else:optional_keys.add(annotation_key)required_keys.discard(annotation_key)assertrequired_keys.isdisjoint(optional_keys),(f"Required keys overlap with optional keys in {name}:"f" {required_keys=}, {optional_keys=}")tp_dict.__annotations__=annotationstp_dict.__required_keys__=frozenset(required_keys)tp_dict.__optional_keys__=frozenset(optional_keys)ifnothasattr(tp_dict,'__total__'):tp_dict.__total__=totalreturntp_dict__call__=dict# static methoddef__subclasscheck__(cls,other):# Typed dicts are only for static structural subtyping.raiseTypeError('TypedDict does not support instance and class checks')__instancecheck__=__subclasscheck__defTypedDict(typename,fields=None,/,*,total=True,**kwargs):"""A simple typed namespace. At runtime it is equivalent to a plain dict. TypedDict creates a dictionary type such that a type checker will expect all instances to have a certain set of keys, where each key is associated with a value of a consistent type. This expectation is not checked at runtime. Usage:: >>> class Point2D(TypedDict): ... x: int ... y: int ... label: str ... >>> a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK >>> b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check >>> Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first') True The type info can be accessed via the Point2D.__annotations__ dict, and the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets. TypedDict supports an additional equivalent form:: Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str}) By default, all keys must be present in a TypedDict. It is possible to override this by specifying totality:: class Point2D(TypedDict, total=False): x: int y: int This means that a Point2D TypedDict can have any of the keys omitted. A type checker is only expected to support a literal False or True as the value of the total argument. True is the default, and makes all items defined in the class body be required. The Required and NotRequired special forms can also be used to mark individual keys as being required or not required:: class Point2D(TypedDict): x: int # the "x" key must always be present (Required is the default) y: NotRequired[int] # the "y" key can be omitted See PEP 655 for more details on Required and NotRequired. """iffieldsisNone:fields=kwargselifkwargs:raiseTypeError("TypedDict takes either a dict or keyword arguments,"" but not both")ifkwargs:warnings.warn("The kwargs-based syntax for TypedDict definitions is deprecated ""in Python 3.11, will be removed in Python 3.13, and may not be ""understood by third-party type checkers.",DeprecationWarning,stacklevel=2,)ns={'__annotations__':dict(fields)}module=_caller()ifmoduleisnotNone:# Setting correct module is necessary to make typed dict classes pickleable.ns['__module__']=modulereturn_TypedDictMeta(typename,(),ns,total=total)_TypedDict=type.__new__(_TypedDictMeta,'TypedDict',(),{})TypedDict.__mro_entries__=lambdabases:(_TypedDict,)@_SpecialFormdefRequired(self,parameters):"""Special typing construct to mark a TypedDict key as required. This is mainly useful for total=False TypedDicts. For example:: class Movie(TypedDict, total=False): title: Required[str] year: int m = Movie( title='The Matrix', # typechecker error if key is omitted year=1999, ) There is no runtime checking that a required key is actually provided when instantiating a related TypedDict. """item=_type_check(parameters,f'{self._name} accepts only a single type.')return_GenericAlias(self,(item,))@_SpecialFormdefNotRequired(self,parameters):"""Special typing construct to mark a TypedDict key as potentially missing. For example:: class Movie(TypedDict): title: str year: NotRequired[int] m = Movie( title='The Matrix', # typechecker error if key is omitted year=1999, ) """item=_type_check(parameters,f'{self._name} accepts only a single type.')return_GenericAlias(self,(item,))classNewType:"""NewType creates simple unique types with almost zero runtime overhead. NewType(name, tp) is considered a subtype of tp by static type checkers. At runtime, NewType(name, tp) returns a dummy callable that simply returns its argument. Usage:: UserId = NewType('UserId', int) def name_by_id(user_id: UserId) -> str: ... UserId('user') # Fails type check name_by_id(42) # Fails type check name_by_id(UserId(42)) # OK num = UserId(5) + 1 # type: int """__call__=_idfuncdef__init__(self,name,tp):self.__qualname__=nameif'.'inname:name=name.rpartition('.')[-1]self.__name__=nameself.__supertype__=tpdef_mod=_caller()ifdef_mod!='typing':self.__module__=def_moddef__mro_entries__(self,bases):# We defined __mro_entries__ to get a better error message# if a user attempts to subclass a NewType instance. bpo-46170superclass_name=self.__name__classDummy:def__init_subclass__(cls):subclass_name=cls.__name__raiseTypeError(f"Cannot subclass an instance of NewType. Perhaps you were looking for: "f"`{subclass_name} = NewType({subclass_name!r}, {superclass_name})`")return(Dummy,)def__repr__(self):returnf'{self.__module__}.{self.__qualname__}'def__reduce__(self):returnself.__qualname__def__or__(self,other):returnUnion[self,other]def__ror__(self,other):returnUnion[other,self]# Python-version-specific alias (Python 2: unicode; Python 3: str)Text=str# Constant that's True when type checking, but False here.TYPE_CHECKING=FalseclassIO(Generic[AnyStr]):"""Generic base class for TextIO and BinaryIO. This is an abstract, generic version of the return of open(). NOTE: This does not distinguish between the different possible classes (text vs. binary, read vs. write vs. read/write, append-only, unbuffered). The TextIO and BinaryIO subclasses below capture the distinctions between text vs. binary, which is pervasive in the interface; however we currently do not offer a way to track the other distinctions in the type system. """__slots__=()@property@abstractmethoddefmode(self)->str:pass@property@abstractmethoddefname(self)->str:pass@abstractmethoddefclose(self)->None:pass@property@abstractmethoddefclosed(self)->bool:pass@abstractmethoddeffileno(self)->int:pass@abstractmethoddefflush(self)->None:pass@abstractmethoddefisatty(self)->bool:pass@abstractmethoddefread(self,n:int=-1)->AnyStr:pass@abstractmethoddefreadable(self)->bool:pass@abstractmethoddefreadline(self,limit:int=-1)->AnyStr:pass@abstractmethoddefreadlines(self,hint:int=-1)->List[AnyStr]:pass@abstractmethoddefseek(self,offset:int,whence:int=0)->int:pass@abstractmethoddefseekable(self)->bool:pass@abstractmethoddeftell(self)->int:pass@abstractmethoddeftruncate(self,size:int=None)->int:pass@abstractmethoddefwritable(self)->bool:pass@abstractmethoddefwrite(self,s:AnyStr)->int:pass@abstractmethoddefwritelines(self,lines:List[AnyStr])->None:pass@abstractmethoddef__enter__(self)->'IO[AnyStr]':pass@abstractmethoddef__exit__(self,type,value,traceback)->None:passclassBinaryIO(IO[bytes]):"""Typed version of the return of open() in binary mode."""__slots__=()@abstractmethoddefwrite(self,s:Union[bytes,bytearray])->int:pass@abstractmethoddef__enter__(self)->'BinaryIO':passclassTextIO(IO[str]):"""Typed version of the return of open() in text mode."""__slots__=()@property@abstractmethoddefbuffer(self)->BinaryIO:pass@property@abstractmethoddefencoding(self)->str:pass@property@abstractmethoddeferrors(self)->Optional[str]:pass@property@abstractmethoddefline_buffering(self)->bool:pass@property@abstractmethoddefnewlines(self)->Any:pass@abstractmethoddef__enter__(self)->'TextIO':passclass_DeprecatedType(type):def__getattribute__(cls,name):ifnamenotin{"__dict__","__module__","__doc__"}andnameincls.__dict__:warnings.warn(f"{cls.__name__} is deprecated, import directly "f"from typing instead. {cls.__name__} will be removed ""in Python 3.12.",DeprecationWarning,stacklevel=2,)returnsuper().__getattribute__(name)classio(metaclass=_DeprecatedType):"""Wrapper namespace for IO generic classes."""__all__=['IO','TextIO','BinaryIO']IO=IOTextIO=TextIOBinaryIO=BinaryIOio.__name__=__name__+'.io'sys.modules[io.__name__]=ioPattern=_alias(stdlib_re.Pattern,1)Match=_alias(stdlib_re.Match,1)classre(metaclass=_DeprecatedType):"""Wrapper namespace for re type aliases."""__all__=['Pattern','Match']Pattern=PatternMatch=Matchre.__name__=__name__+'.re'sys.modules[re.__name__]=redefreveal_type(obj:T,/)->T:"""Ask a static type checker to reveal the inferred type of an expression. When a static type checker encounters a call to ``reveal_type()``, it will emit the inferred type of the argument:: x: int = 1 reveal_type(x) Running a static type checker (e.g., mypy) on this example will produce output similar to 'Revealed type is "builtins.int"'. At runtime, the function prints the runtime type of the argument and returns the argument unchanged. """print(f"Runtime type is {type(obj).__name__!r}",file=sys.stderr)returnobjdefdataclass_transform(*,eq_default:bool=True,order_default:bool=False,kw_only_default:bool=False,field_specifiers:tuple[type[Any]|Callable[...,Any],...]=(),**kwargs:Any,)->Callable[[T],T]:"""Decorator to mark an object as providing dataclass-like behaviour. The decorator can be applied to a function, class, or metaclass. Example usage with a decorator function:: T = TypeVar("T") @dataclass_transform() def create_model(cls: type[T]) -> type[T]: ... return cls @create_model class CustomerModel: id: int name: str On a base class:: @dataclass_transform() class ModelBase: ... class CustomerModel(ModelBase): id: int name: str On a metaclass:: @dataclass_transform() class ModelMeta(type): ... class ModelBase(metaclass=ModelMeta): ... class CustomerModel(ModelBase): id: int name: str The ``CustomerModel`` classes defined above will be treated by type checkers similarly to classes created with ``@dataclasses.dataclass``. For example, type checkers will assume these classes have ``__init__`` methods that accept ``id`` and ``name``. The arguments to this decorator can be used to customize this behavior: - ``eq_default`` indicates whether the ``eq`` parameter is assumed to be ``True`` or ``False`` if it is omitted by the caller. - ``order_default`` indicates whether the ``order`` parameter is assumed to be True or False if it is omitted by the caller. - ``kw_only_default`` indicates whether the ``kw_only`` parameter is assumed to be True or False if it is omitted by the caller. - ``field_specifiers`` specifies a static list of supported classes or functions that describe fields, similar to ``dataclasses.field()``. - Arbitrary other keyword arguments are accepted in order to allow for possible future extensions. At runtime, this decorator records its arguments in the ``__dataclass_transform__`` attribute on the decorated object. It has no other runtime effect. See PEP 681 for more details. """defdecorator(cls_or_fn):cls_or_fn.__dataclass_transform__={"eq_default":eq_default,"order_default":order_default,"kw_only_default":kw_only_default,"field_specifiers":field_specifiers,"kwargs":kwargs,}returncls_or_fnreturndecorator