AzureAIEmbeddingsModel#
- class langchain_azure_ai.embeddings.inference.AzureAIEmbeddingsModel[source]#
Bases:
BaseModel
,Embeddings
Azure AI model inference for embeddings.
Examples
If your endpoint supports multiple models, indicate the parameter model_name:
- Troubleshooting:
To diagnostic issues with the model, you can enable debug logging:
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param api_version: str | None = None#
The API version to use for the Azure AI model inference API. If None, the default version is used.
- param client_kwargs: Dict[str, Any] = {}#
Additional kwargs for the Azure AI client used.
- param credential: str | AzureKeyCredential | TokenCredential [Required]#
The API key or credential to use for the Azure AI model inference.
- param dimensions: int | None = None#
The number of dimensions in the embeddings to generate. If None, the modelβs default is used.
- param embed_batch_size: int = 1024#
The batch size for embedding requests. The default is 1024.
- param endpoint: str | None = None#
The endpoint URI where the model is deployed. Either this or the project_connection_string parameter must be specified.
- param model_kwargs: Dict[str, Any] = {}#
Additional kwargs model parameters.
- param model_name: str | None = None#
The name of the model to use for inference, if the endpoint is running more than one model. If not, this parameter is ignored.
- param project_connection_string: str | None = None#
The connection string to use for the Azure AI project. If this is specified, then the endpoint parameter becomes optional and credential has to be of type TokenCredential.
- classmethod validate_environment(values: Dict) Any [source]#
Validate that api key exists in environment.
- Parameters:
values (Dict)
- Return type:
Any
- async aembed_documents(texts: list[str]) list[list[float]] [source]#
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] [source]#
Asynchronous Embed query text.
- Parameters:
text (str) β Text to embed.
- Returns:
Embedding.
- Return type:
list[float]