langchain-cohere¶
Reference docs
This page contains reference documentation for Cohere. See the docs for conceptual guides, tutorials, and examples on using Cohere modules.
langchain_cohere
¶
| FUNCTION | DESCRIPTION |
|---|---|
create_cohere_react_agent |
Create an agent that enables multiple tools to be used in sequence to complete a |
ChatCohere
¶
Bases: BaseChatModel, BaseCohere
Implements the BaseChatModel (and BaseLanguageModel) interface with Cohere's
large language models.
Find out more about us at https://cohere.com and https://huggingface.co/CohereForAI
This implementation uses the Chat API - see https://docs.cohere.com/reference/chat
To use this you'll need to a Cohere API key - either pass it to cohere_api_key
parameter or set the COHERE_API_KEY environment variable.
API keys are available on https://cohere.com - it's free to sign up and trial API keys work with this implementation.
Basic Example
| METHOD | DESCRIPTION |
|---|---|
get_name |
Get the name of the |
get_input_schema |
Get a Pydantic model that can be used to validate input to the |
get_input_jsonschema |
Get a JSON schema that represents the input to the |
get_output_schema |
Get a Pydantic model that can be used to validate output to the |
get_output_jsonschema |
Get a JSON schema that represents the output of the |
config_schema |
The type of config this |
get_config_jsonschema |
Get a JSON schema that represents the config of the |
get_graph |
Return a graph representation of this |
get_prompts |
Return a list of prompts used by this |
__or__ |
Runnable "or" operator. |
__ror__ |
Runnable "reverse-or" operator. |
pipe |
Pipe |
pick |
Pick keys from the output |
assign |
Assigns new fields to the |
invoke |
Transform a single input into an output. |
ainvoke |
Transform a single input into an output. |
batch |
Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed |
Run |
abatch |
Default implementation runs |
abatch_as_completed |
Run |
stream |
Default implementation of |
astream |
Default implementation of |
astream_log |
Stream all output from a |
astream_events |
Generate a stream of events. |
transform |
Transform inputs to outputs. |
atransform |
Transform inputs to outputs. |
bind |
Bind arguments to a |
with_config |
Bind config to a |
with_listeners |
Bind lifecycle listeners to a |
with_alisteners |
Bind async lifecycle listeners to a |
with_types |
Bind input and output types to a |
with_retry |
Create a new |
map |
Return a new |
with_fallbacks |
Add fallbacks to a |
as_tool |
Create a |
__init__ |
|
is_lc_serializable |
Is this class serializable? |
get_lc_namespace |
Get the namespace of the LangChain object. |
lc_id |
Return a unique identifier for this class for serialization purposes. |
to_json |
Serialize the |
to_json_not_implemented |
Serialize a "not implemented" object. |
validate_environment |
Validate that api key and python package exists in environment. |
configurable_fields |
Configure particular |
configurable_alternatives |
Configure alternatives for |
set_verbose |
If verbose is |
generate_prompt |
Pass a sequence of prompts to the model and return model generations. |
agenerate_prompt |
Asynchronously pass a sequence of prompts and return model generations. |
get_token_ids |
Return the ordered IDs of the tokens in a text. |
get_num_tokens_from_messages |
Get the number of tokens in the messages. |
generate |
Pass a sequence of prompts to the model and return model generations. |
agenerate |
Asynchronously pass a sequence of prompts to a model and return generations. |
dict |
Return a dictionary of the LLM. |
bind_tools |
Bind tools to the model. |
with_structured_output |
Model wrapper that returns outputs formatted to match the given schema. |
get_num_tokens |
Calculate number of tokens. |
name
class-attribute
instance-attribute
¶
name: str | None = None
The name of the Runnable. Used for debugging and tracing.
input_schema
property
¶
The type of input this Runnable accepts specified as a Pydantic model.
output_schema
property
¶
Output schema.
The type of output this Runnable produces specified as a Pydantic model.
config_specs
property
¶
config_specs: list[ConfigurableFieldSpec]
List configurable fields for this Runnable.
lc_secrets
property
¶
A map of constructor argument names to secret ids.
For example, {"openai_api_key": "OPENAI_API_KEY"}
lc_attributes
property
¶
lc_attributes: dict
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
Default is an empty dictionary.
model
class-attribute
instance-attribute
¶
Model name to use.
temperature
class-attribute
instance-attribute
¶
temperature: float | None = None
A non-negative float that tunes the degree of randomness in generation.
cohere_api_key
class-attribute
instance-attribute
¶
cohere_api_key: SecretStr | None = Field(
default_factory=secret_from_env("COHERE_API_KEY", default=None)
)
Cohere API key. If not provided, will be read from the environment variable.
streaming
class-attribute
instance-attribute
¶
Whether to stream the results.
user_agent
class-attribute
instance-attribute
¶
user_agent: str = 'langchain:partner'
Identifier for the application making the request.
timeout_seconds
class-attribute
instance-attribute
¶
timeout_seconds: float | None = 300
Timeout in seconds for the Cohere API request.
base_url
class-attribute
instance-attribute
¶
base_url: str | None = None
Override the default Cohere API URL.
cache
class-attribute
instance-attribute
¶
Whether to cache the response.
- If
True, will use the global cache. - If
False, will not use a cache - If
None, will use the global cache if it's set, otherwise no cache. - If instance of
BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
verbose
class-attribute
instance-attribute
¶
Whether to print out response text.
callbacks
class-attribute
instance-attribute
¶
callbacks: Callbacks = Field(default=None, exclude=True)
Callbacks to add to the run trace.
tags
class-attribute
instance-attribute
¶
Tags to add to the run trace.
metadata
class-attribute
instance-attribute
¶
Metadata to add to the run trace.
custom_get_token_ids
class-attribute
instance-attribute
¶
Optional encoder to use for counting tokens.
rate_limiter
class-attribute
instance-attribute
¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)
An optional rate limiter to use for limiting the number of requests.
disable_streaming
class-attribute
instance-attribute
¶
Whether to disable streaming for this model.
If streaming is bypassed, then stream/astream/astream_events will
defer to invoke/ainvoke.
- If
True, will always bypass streaming case. - If
'tool_calling', will bypass streaming case only when the model is called with atoolskeyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke) only when the tools argument is provided. This offers the best of both worlds. - If
False(Default), will always use streaming case if available.
The main reason for this flag is that code might be written using stream and
a user may want to swap out a given model for another model whose the implementation
does not properly support streaming.
output_version
class-attribute
instance-attribute
¶
Version of AIMessage output format to store in message content.
AIMessage.content_blocks will lazily parse the contents of content into a
standard format. This flag can be used to additionally store the standard format
in message content, e.g., for serialization purposes.
Supported values:
'v0': provider-specific format in content (can lazily-parse withcontent_blocks)'v1': standardized format in content (consistent withcontent_blocks)
Partner packages (e.g.,
langchain-openai) can also use this
field to roll out new content formats in a backward-compatible way.
Added in langchain-core 1.0
profile
property
¶
profile: ModelProfile
Return profiling information for the model.
This property relies on the langchain-model-profiles package to retrieve chat
model capabilities, such as context window sizes and supported features.
| RAISES | DESCRIPTION |
|---|---|
ImportError
|
If |
| RETURNS | DESCRIPTION |
|---|---|
ModelProfile
|
A |
get_name
¶
get_input_schema
¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate input to the Runnable.
Runnable objects that leverage the configurable_fields and
configurable_alternatives methods will have a dynamic input schema that
depends on which configuration the Runnable is invoked with.
This method allows to get an input schema for a specific configuration.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
get_input_jsonschema
¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the input to the Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
Example
Added in langchain-core 0.3.0
get_output_schema
¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate output to the Runnable.
Runnable objects that leverage the configurable_fields and
configurable_alternatives methods will have a dynamic output schema that
depends on which configuration the Runnable is invoked with.
This method allows to get an output schema for a specific configuration.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
get_output_jsonschema
¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the output of the Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
Example
Added in langchain-core 0.3.0
config_schema
¶
The type of config this Runnable accepts specified as a Pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
get_config_jsonschema
¶
Get a JSON schema that represents the config of the Runnable.
Added in langchain-core 0.3.0
get_graph
¶
get_graph(config: RunnableConfig | None = None) -> Graph
Return a graph representation of this Runnable.
get_prompts
¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
Return a list of prompts used by this Runnable.
__or__
¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" operator.
Compose this Runnable with another object to create a
RunnableSequence.
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Other]
|
A new |
__ror__
¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" operator.
Compose this Runnable with another object to create a
RunnableSequence.
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Other, Output]
|
A new |
pipe
¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
Pipe Runnable objects.
Compose this Runnable with Runnable-like objects to make a
RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | ...
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Other]
|
A new |
pick
¶
Pick keys from the output dict of this Runnable.
Pick a single key:
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick a list of keys:
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Any, Any]
|
a new |
assign
¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
Assigns new fields to the dict output of this Runnable.
from langchain_core.language_models.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs
|
A mapping of keys to
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Any, Any]
|
A new |
invoke
¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
Transform a single input into an output.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Output
|
The output of the |
ainvoke
async
¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
Transform a single input into an output.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Output
|
The output of the |
batch
¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Output]
|
A list of outputs from the |
batch_as_completed
¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
Run invoke in parallel on a list of inputs.
Yields results as they complete.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
abatch
async
¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Output]
|
A list of outputs from the |
abatch_as_completed
async
¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
Run ainvoke in parallel on a list of inputs.
Yields results as they complete.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
A tuple of the index of the input and the output from the |
stream
¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[AIMessageChunk]
Default implementation of stream, which calls invoke.
Subclasses must override this method if they support streaming output.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
Output
|
The output of the |
astream
async
¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[AIMessageChunk]
Default implementation of astream, which calls ainvoke.
Subclasses must override this method if they support streaming output.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[Output]
|
The output of the |
astream_log
async
¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
Stream all output from a Runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
diff
|
Whether to yield diffs between each step or the current state.
TYPE:
|
with_streamed_output_list
|
Whether to yield the
TYPE:
|
include_names
|
Only include logs with these names. |
include_types
|
Only include logs with these types. |
include_tags
|
Only include logs with these tags. |
exclude_names
|
Exclude logs with these names. |
exclude_types
|
Exclude logs with these types. |
exclude_tags
|
Exclude logs with these tags. |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
A |
astream_events
async
¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
Generate a stream of events.
Use to create an iterator over StreamEvent that provide real-time information
about the progress of the Runnable, including StreamEvent from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: Event names are of the format:on_[runnable_type]_(start|stream|end).name: The name of theRunnablethat generated the event.run_id: Randomly generated ID associated with the given execution of theRunnablethat emitted the event. A childRunnablethat gets invoked as part of the execution of a parentRunnableis assigned its own unique ID.parent_ids: The IDs of the parent runnables that generated the event. The rootRunnablewill have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags: The tags of theRunnablethat generated the event.metadata: The metadata of theRunnablethat generated the event.data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
| event | name | chunk | input | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'Hello' |
||
on_llm_end |
'[model name]' |
'Hello human!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
| Attribute | Type | Description |
|---|---|---|
name |
str |
A user defined name for the event. |
data |
Any |
The data associated with the event. This can be anything, though we suggest making it JSON serializable. |
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
For instance:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
version
|
The version of the schema to use either
TYPE:
|
include_names
|
Only include events from |
include_types
|
Only include events from |
include_tags
|
Only include events from |
exclude_names
|
Exclude events from |
exclude_types
|
Exclude events from |
exclude_tags
|
Exclude events from |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[StreamEvent]
|
An async stream of |
| RAISES | DESCRIPTION |
|---|---|
NotImplementedError
|
If the version is not |
transform
¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream.
Subclasses must override this method if they can start producing output while input is still being generated.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
An iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
Output
|
The output of the |
atransform
async
¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream.
Subclasses must override this method if they can start producing output while input is still being generated.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
An async iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[Output]
|
The output of the |
bind
¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a Runnable in a chain requires an argument that is not
in the output of the previous Runnable or included in the user input.
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs
|
The arguments to bind to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config
¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
Bind config to a Runnable, returning a new Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
The config to bind to the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
with_listeners
¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
Bind lifecycle listeners to a Runnable, returning a new Runnable.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and
any tags or metadata added to the run.
| PARAMETER | DESCRIPTION |
|---|---|
on_start
|
Called before the
TYPE:
|
on_end
|
Called after the
TYPE:
|
on_error
|
Called if the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners
¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
Bind async lifecycle listeners to a Runnable.
Returns a new Runnable.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and
any tags or metadata added to the run.
| PARAMETER | DESCRIPTION |
|---|---|
on_start
|
Called asynchronously before the
TYPE:
|
on_end
|
Called asynchronously after the
TYPE:
|
on_error
|
Called asynchronously if the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start, on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
# Result:
# on start callback starts at 2025-03-01T07:05:22.875378+00:00
# on start callback starts at 2025-03-01T07:05:22.875495+00:00
# on start callback ends at 2025-03-01T07:05:25.878862+00:00
# on start callback ends at 2025-03-01T07:05:25.878947+00:00
# Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
# Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
# Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
# on end callback starts at 2025-03-01T07:05:27.882360+00:00
# Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
# on end callback starts at 2025-03-01T07:05:28.882428+00:00
# on end callback ends at 2025-03-01T07:05:29.883893+00:00
# on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types
¶
with_types(
*, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]
Bind input and output types to a Runnable, returning a new Runnable.
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
with_retry
¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
Create a new Runnable that retries the original Runnable on exceptions.
| PARAMETER | DESCRIPTION |
|---|---|
retry_if_exception_type
|
A tuple of exception types to retry on.
TYPE:
|
wait_exponential_jitter
|
Whether to add jitter to the wait time between retries.
TYPE:
|
stop_after_attempt
|
The maximum number of attempts to make before giving up.
TYPE:
|
exponential_jitter_params
|
Parameters for
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map
¶
Return a new Runnable that maps a list of inputs to a list of outputs.
Calls invoke with each input.
with_fallbacks
¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
Add fallbacks to a Runnable, returning a new Runnable.
The new Runnable will try the original Runnable, and then each fallback
in order, upon failures.
| PARAMETER | DESCRIPTION |
|---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If If If used, the base
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| PARAMETER | DESCRIPTION |
|---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If If If used, the base
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
as_tool
¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
Create a BaseTool from a Runnable.
as_tool will instantiate a BaseTool with a name, description, and
args_schema from a Runnable. Where possible, schemas are inferred
from runnable.get_input_schema.
Alternatively (e.g., if the Runnable takes a dict as input and the specific
dict keys are not typed), the schema can be specified directly with
args_schema.
You can also pass arg_types to just specify the required arguments and their
types.
| RETURNS | DESCRIPTION |
|---|---|
BaseTool
|
A |
Typed dict input:
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict input, specifying schema via args_schema:
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict input, specifying schema via arg_types:
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
str input:
is_lc_serializable
classmethod
¶
is_lc_serializable() -> bool
Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
| RETURNS | DESCRIPTION |
|---|---|
bool
|
Whether the class is serializable. Default is |
get_lc_namespace
classmethod
¶
lc_id
classmethod
¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
For example, for the class langchain.llms.openai.OpenAI, the id is
["langchain", "llms", "openai", "OpenAI"].
to_json
¶
Serialize the Runnable to JSON.
| RETURNS | DESCRIPTION |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
A JSON-serializable representation of the |
to_json_not_implemented
¶
Serialize a "not implemented" object.
| RETURNS | DESCRIPTION |
|---|---|
SerializedNotImplemented
|
|
validate_environment
¶
validate_environment() -> Self
Validate that api key and python package exists in environment.
configurable_fields
¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
Configure particular Runnable fields at runtime.
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs
|
A dictionary of
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValueError
|
If a configuration key is not found in the |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives
¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
Configure alternatives for Runnable objects that can be set at runtime.
| PARAMETER | DESCRIPTION |
|---|---|
which
|
The
TYPE:
|
default_key
|
The default key to use if no alternative is selected.
TYPE:
|
prefix_keys
|
Whether to prefix the keys with the
TYPE:
|
**kwargs
|
A dictionary of keys to
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose
¶
generate_prompt
¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
prompts
|
List of A
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
Used for executing additional functionality, such as logging or streaming, throughout generation.
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
LLMResult
|
An |
agenerate_prompt
async
¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
prompts
|
List of A
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
Used for executing additional functionality, such as logging or streaming, throughout generation.
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
LLMResult
|
An |
get_token_ids
¶
get_num_tokens_from_messages
¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
Get the number of tokens in the messages.
Useful for checking if an input fits in a model's context window.
Note
The base implementation of get_num_tokens_from_messages ignores tool
schemas.
| PARAMETER | DESCRIPTION |
|---|---|
messages
|
The message inputs to tokenize.
TYPE:
|
tools
|
If provided, sequence of dict,
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
int
|
The sum of the number of tokens across the messages. |
generate
¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
messages
|
List of list of messages.
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
Used for executing additional functionality, such as logging or streaming, throughout generation.
TYPE:
|
tags
|
The tags to apply. |
metadata
|
The metadata to apply. |
run_name
|
The name of the run.
TYPE:
|
run_id
|
The ID of the run.
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
LLMResult
|
An |
agenerate
async
¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
messages
|
List of list of messages.
TYPE:
|
stop
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks
|
Used for executing additional functionality, such as logging or streaming, throughout generation.
TYPE:
|
tags
|
The tags to apply. |
metadata
|
The metadata to apply. |
run_name
|
The name of the run.
TYPE:
|
run_id
|
The ID of the run.
TYPE:
|
**kwargs
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
LLMResult
|
An |
bind_tools
¶
bind_tools(
tools: Sequence[dict[str, Any] | Type[BaseModel] | Callable | BaseTool],
**kwargs: Any,
) -> Runnable[LanguageModelInput, AIMessage]
Bind tools to the model.
| RETURNS | DESCRIPTION |
|---|---|
Runnable[LanguageModelInput, AIMessage]
|
A Runnable that returns a message. |
with_structured_output
¶
with_structured_output(
schema: dict | Type[BaseModel],
method: Literal[
"function_calling", "tool_calling", "json_mode", "json_schema"
] = "json_schema",
**kwargs: Any,
) -> Runnable[LanguageModelInput, dict | BaseModel]
Model wrapper that returns outputs formatted to match the given schema.
Given schema can be a Pydantic class or a dict.
| PARAMETER | DESCRIPTION |
|---|---|
schema
|
The output schema as a |
method
|
The method for steering model generation, one of:
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[LanguageModelInput, dict | BaseModel]
|
A |
CohereCitation
dataclass
¶
Cohere has fine-grained citations that specify the exact part of text.
More info at https://docs.cohere.com/docs/documents-and-citations
start
instance-attribute
¶
start: int
The index of text that the citation starts at, counting from zero.
For example, a generation of 'Hello, world!' with a citation on 'world' would
have a start value of 7. This is because the citation starts at 'w', which is
the seventh character.
end
instance-attribute
¶
end: int
The index of text that the citation ends after, counting from zero.
For example, a generation of 'Hello, world!' with a citation on 'world' would
have an end value of 11. This is because the citation ends after 'd', which is
the eleventh character.
text
instance-attribute
¶
text: str
The text of the citation.
For example, a generation of 'Hello, world!' with a citation of 'world' would
have a text value of 'world'.
documents
instance-attribute
¶
The contents of the documents that were cited.
When used with agents these will be the contents of relevant agent outputs.
Every document will have a string field called id. This can be used with the
document_ids field to deduplicate documents across several citations. The id
field is created on the document when it doesn't already exist.
CohereEmbeddings
¶
Bases: BaseModel, Embeddings
Implements the Embeddings interface with Cohere's text representation language
models.
Find out more about us at https://cohere.com and https://huggingface.co/CohereForAI
This implementation uses the Embed API - see https://docs.cohere.com/reference/embed
To use this you'll need to a Cohere API key - either pass it to cohere_api_key
parameter or set the COHERE_API_KEY environment variable.
API keys are available on https://cohere.com - it's free to sign up and trial API keys work with this implementation.
Basic Example
| METHOD | DESCRIPTION |
|---|---|
validate_environment |
Validate that api key and python package exists in environment. |
validate_model_specified |
Validate that model is specified. |
embed_with_retry |
Use tenacity to retry the embed call. |
aembed_with_retry |
Use tenacity to retry the embed call. |
embed_documents |
Embed a list of document texts. |
aembed_documents |
Async call out to Cohere's embedding endpoint. |
embed_query |
Call out to Cohere's embedding endpoint. |
aembed_query |
Async call out to Cohere's embedding endpoint. |
model
class-attribute
instance-attribute
¶
model: str | None = None
Model name to use. It is mandatory to specify the model name.
truncate
class-attribute
instance-attribute
¶
truncate: str | None = None
Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")
embedding_types
class-attribute
instance-attribute
¶
Specifies the types of embeddings you want to get back
max_retries
class-attribute
instance-attribute
¶
max_retries: int = 3
Maximum number of retries to make when generating.
request_timeout
class-attribute
instance-attribute
¶
request_timeout: float | None = None
Timeout in seconds for the Cohere API request.
user_agent
class-attribute
instance-attribute
¶
user_agent: str = 'langchain:partner'
Identifier for the application making the request.
base_url
class-attribute
instance-attribute
¶
base_url: str | None = None
Override the default Cohere API URL.
validate_environment
classmethod
¶
Validate that api key and python package exists in environment.
embed_documents
¶
aembed_documents
async
¶
embed_query
¶
CohereRagRetriever
¶
Bases: BaseRetriever
Cohere Chat API with RAG.
| METHOD | DESCRIPTION |
|---|---|
get_name |
Get the name of the |
get_input_schema |
Get a Pydantic model that can be used to validate input to the |
get_input_jsonschema |
Get a JSON schema that represents the input to the |
get_output_schema |
Get a Pydantic model that can be used to validate output to the |
get_output_jsonschema |
Get a JSON schema that represents the output of the |
config_schema |
The type of config this |
get_config_jsonschema |
Get a JSON schema that represents the config of the |
get_graph |
Return a graph representation of this |
get_prompts |
Return a list of prompts used by this |
__or__ |
Runnable "or" operator. |
__ror__ |
Runnable "reverse-or" operator. |
pipe |
Pipe |
pick |
Pick keys from the output |
assign |
Assigns new fields to the |
invoke |
Invoke the retriever to get relevant documents. |
ainvoke |
Asynchronously invoke the retriever to get relevant documents. |
batch |
Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed |
Run |
abatch |
Default implementation runs |
abatch_as_completed |
Run |
stream |
Default implementation of |
astream |
Default implementation of |
astream_log |
Stream all output from a |
astream_events |
Generate a stream of events. |
transform |
Transform inputs to outputs. |
atransform |
Transform inputs to outputs. |
bind |
Bind arguments to a |
with_config |
Bind config to a |
with_listeners |
Bind lifecycle listeners to a |
with_alisteners |
Bind async lifecycle listeners to a |
with_types |
Bind input and output types to a |
with_retry |
Create a new |
map |
Return a new |
with_fallbacks |
Add fallbacks to a |
as_tool |
Create a |
__init__ |
|
is_lc_serializable |
Is this class serializable? |
get_lc_namespace |
Get the namespace of the LangChain object. |
lc_id |
Return a unique identifier for this class for serialization purposes. |
to_json |
Serialize the |
to_json_not_implemented |
Serialize a "not implemented" object. |
configurable_fields |
Configure particular |
configurable_alternatives |
Configure alternatives for |
name
class-attribute
instance-attribute
¶
name: str | None = None
The name of the Runnable. Used for debugging and tracing.
InputType
property
¶
InputType: type[Input]
Input type.
The type of input this Runnable accepts specified as a type annotation.
| RAISES | DESCRIPTION |
|---|---|
TypeError
|
If the input type cannot be inferred. |
OutputType
property
¶
OutputType: type[Output]
Output Type.
The type of output this Runnable produces specified as a type annotation.
| RAISES | DESCRIPTION |
|---|---|
TypeError
|
If the output type cannot be inferred. |
input_schema
property
¶
The type of input this Runnable accepts specified as a Pydantic model.
output_schema
property
¶
Output schema.
The type of output this Runnable produces specified as a Pydantic model.
config_specs
property
¶
config_specs: list[ConfigurableFieldSpec]
List configurable fields for this Runnable.
lc_secrets
property
¶
A map of constructor argument names to secret ids.
For example, {"openai_api_key": "OPENAI_API_KEY"}
lc_attributes
property
¶
lc_attributes: dict
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
Default is an empty dictionary.
tags
class-attribute
instance-attribute
¶
Optional list of tags associated with the retriever.
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its use case.
metadata
class-attribute
instance-attribute
¶
Optional metadata associated with the retriever.
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its use case.
get_name
¶
get_input_schema
¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate input to the Runnable.
Runnable objects that leverage the configurable_fields and
configurable_alternatives methods will have a dynamic input schema that
depends on which configuration the Runnable is invoked with.
This method allows to get an input schema for a specific configuration.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
get_input_jsonschema
¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the input to the Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
Example
Added in langchain-core 0.3.0
get_output_schema
¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate output to the Runnable.
Runnable objects that leverage the configurable_fields and
configurable_alternatives methods will have a dynamic output schema that
depends on which configuration the Runnable is invoked with.
This method allows to get an output schema for a specific configuration.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
get_output_jsonschema
¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the output of the Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
A config to use when generating the schema.
TYPE:
|
Example
Added in langchain-core 0.3.0
config_schema
¶
The type of config this Runnable accepts specified as a Pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
get_config_jsonschema
¶
Get a JSON schema that represents the config of the Runnable.
Added in langchain-core 0.3.0
get_graph
¶
get_graph(config: RunnableConfig | None = None) -> Graph
Return a graph representation of this Runnable.
get_prompts
¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
Return a list of prompts used by this Runnable.
__or__
¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" operator.
Compose this Runnable with another object to create a
RunnableSequence.
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Other]
|
A new |
__ror__
¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" operator.
Compose this Runnable with another object to create a
RunnableSequence.
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Other, Output]
|
A new |
pipe
¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
Pipe Runnable objects.
Compose this Runnable with Runnable-like objects to make a
RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | ...
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Other]
|
A new |
pick
¶
Pick keys from the output dict of this Runnable.
Pick a single key:
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick a list of keys:
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Any, Any]
|
a new |
assign
¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
Assigns new fields to the dict output of this Runnable.
from langchain_core.language_models.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs
|
A mapping of keys to
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Any, Any]
|
A new |
invoke
¶
invoke(
input: str, config: RunnableConfig | None = None, **kwargs: Any
) -> list[Document]
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The query string.
TYPE:
|
config
|
Configuration for the retriever.
TYPE:
|
**kwargs
|
Additional arguments to pass to the retriever.
TYPE:
|
Examples:
ainvoke
async
¶
ainvoke(
input: str, config: RunnableConfig | None = None, **kwargs: Any
) -> list[Document]
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The query string.
TYPE:
|
config
|
Configuration for the retriever.
TYPE:
|
**kwargs
|
Additional arguments to pass to the retriever.
TYPE:
|
Examples:
batch
¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Output]
|
A list of outputs from the |
batch_as_completed
¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
Run invoke in parallel on a list of inputs.
Yields results as they complete.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
abatch
async
¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
list[Output]
|
A list of outputs from the |
abatch_as_completed
async
¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
Run ainvoke in parallel on a list of inputs.
Yields results as they complete.
| PARAMETER | DESCRIPTION |
|---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the The config supports standard keys like Please refer to
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
A tuple of the index of the input and the output from the |
stream
¶
stream(
input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
Default implementation of stream, which calls invoke.
Subclasses must override this method if they support streaming output.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
Output
|
The output of the |
astream
async
¶
astream(
input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> AsyncIterator[Output]
Default implementation of astream, which calls ainvoke.
Subclasses must override this method if they support streaming output.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[Output]
|
The output of the |
astream_log
async
¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
Stream all output from a Runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
diff
|
Whether to yield diffs between each step or the current state.
TYPE:
|
with_streamed_output_list
|
Whether to yield the
TYPE:
|
include_names
|
Only include logs with these names. |
include_types
|
Only include logs with these types. |
include_tags
|
Only include logs with these tags. |
exclude_names
|
Exclude logs with these names. |
exclude_types
|
Exclude logs with these types. |
exclude_tags
|
Exclude logs with these tags. |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
A |
astream_events
async
¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
Generate a stream of events.
Use to create an iterator over StreamEvent that provide real-time information
about the progress of the Runnable, including StreamEvent from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: Event names are of the format:on_[runnable_type]_(start|stream|end).name: The name of theRunnablethat generated the event.run_id: Randomly generated ID associated with the given execution of theRunnablethat emitted the event. A childRunnablethat gets invoked as part of the execution of a parentRunnableis assigned its own unique ID.parent_ids: The IDs of the parent runnables that generated the event. The rootRunnablewill have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags: The tags of theRunnablethat generated the event.metadata: The metadata of theRunnablethat generated the event.data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
| event | name | chunk | input | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'Hello' |
||
on_llm_end |
'[model name]' |
'Hello human!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
| Attribute | Type | Description |
|---|---|---|
name |
str |
A user defined name for the event. |
data |
Any |
The data associated with the event. This can be anything, though we suggest making it JSON serializable. |
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
For instance:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| PARAMETER | DESCRIPTION |
|---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
version
|
The version of the schema to use either
TYPE:
|
include_names
|
Only include events from |
include_types
|
Only include events from |
include_tags
|
Only include events from |
exclude_names
|
Exclude events from |
exclude_types
|
Exclude events from |
exclude_tags
|
Exclude events from |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[StreamEvent]
|
An async stream of |
| RAISES | DESCRIPTION |
|---|---|
NotImplementedError
|
If the version is not |
transform
¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream.
Subclasses must override this method if they can start producing output while input is still being generated.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
An iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
Output
|
The output of the |
atransform
async
¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream.
Subclasses must override this method if they can start producing output while input is still being generated.
| PARAMETER | DESCRIPTION |
|---|---|
input
|
An async iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[Output]
|
The output of the |
bind
¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a Runnable in a chain requires an argument that is not
in the output of the previous Runnable or included in the user input.
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs
|
The arguments to bind to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config
¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
Bind config to a Runnable, returning a new Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config
|
The config to bind to the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
with_listeners
¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
Bind lifecycle listeners to a Runnable, returning a new Runnable.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and
any tags or metadata added to the run.
| PARAMETER | DESCRIPTION |
|---|---|
on_start
|
Called before the
TYPE:
|
on_end
|
Called after the
TYPE:
|
on_error
|
Called if the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners
¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
Bind async lifecycle listeners to a Runnable.
Returns a new Runnable.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and
any tags or metadata added to the run.
| PARAMETER | DESCRIPTION |
|---|---|
on_start
|
Called asynchronously before the
TYPE:
|
on_end
|
Called asynchronously after the
TYPE:
|
on_error
|
Called asynchronously if the
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start, on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
# Result:
# on start callback starts at 2025-03-01T07:05:22.875378+00:00
# on start callback starts at 2025-03-01T07:05:22.875495+00:00
# on start callback ends at 2025-03-01T07:05:25.878862+00:00
# on start callback ends at 2025-03-01T07:05:25.878947+00:00
# Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
# Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
# Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
# on end callback starts at 2025-03-01T07:05:27.882360+00:00
# Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
# on end callback starts at 2025-03-01T07:05:28.882428+00:00
# on end callback ends at 2025-03-01T07:05:29.883893+00:00
# on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types
¶
with_types(
*, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]
Bind input and output types to a Runnable, returning a new Runnable.
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
with_retry
¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
Create a new Runnable that retries the original Runnable on exceptions.
| PARAMETER | DESCRIPTION |
|---|---|
retry_if_exception_type
|
A tuple of exception types to retry on.
TYPE:
|
wait_exponential_jitter
|
Whether to add jitter to the wait time between retries.
TYPE:
|
stop_after_attempt
|
The maximum number of attempts to make before giving up.
TYPE:
|
exponential_jitter_params
|
Parameters for
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map
¶
Return a new Runnable that maps a list of inputs to a list of outputs.
Calls invoke with each input.
with_fallbacks
¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
Add fallbacks to a Runnable, returning a new Runnable.
The new Runnable will try the original Runnable, and then each fallback
in order, upon failures.
| PARAMETER | DESCRIPTION |
|---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If If If used, the base
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| PARAMETER | DESCRIPTION |
|---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If If If used, the base
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
as_tool
¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
Create a BaseTool from a Runnable.
as_tool will instantiate a BaseTool with a name, description, and
args_schema from a Runnable. Where possible, schemas are inferred
from runnable.get_input_schema.
Alternatively (e.g., if the Runnable takes a dict as input and the specific
dict keys are not typed), the schema can be specified directly with
args_schema.
You can also pass arg_types to just specify the required arguments and their
types.
| RETURNS | DESCRIPTION |
|---|---|
BaseTool
|
A |
Typed dict input:
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict input, specifying schema via args_schema:
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict input, specifying schema via arg_types:
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
str input:
is_lc_serializable
classmethod
¶
is_lc_serializable() -> bool
Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
| RETURNS | DESCRIPTION |
|---|---|
bool
|
Whether the class is serializable. Default is |
get_lc_namespace
classmethod
¶
lc_id
classmethod
¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
For example, for the class langchain.llms.openai.OpenAI, the id is
["langchain", "llms", "openai", "OpenAI"].
to_json
¶
Serialize the Runnable to JSON.
| RETURNS | DESCRIPTION |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
A JSON-serializable representation of the |
to_json_not_implemented
¶
Serialize a "not implemented" object.
| RETURNS | DESCRIPTION |
|---|---|
SerializedNotImplemented
|
|
configurable_fields
¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
Configure particular Runnable fields at runtime.
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs
|
A dictionary of
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValueError
|
If a configuration key is not found in the |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives
¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
Configure alternatives for Runnable objects that can be set at runtime.
| PARAMETER | DESCRIPTION |
|---|---|
which
|
The
TYPE:
|
default_key
|
The default key to use if no alternative is selected.
TYPE:
|
prefix_keys
|
Whether to prefix the keys with the
TYPE:
|
**kwargs
|
A dictionary of keys to
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
CohereRerank
¶
Bases: BaseDocumentCompressor
Document compressor that uses Cohere Rerank API.
| METHOD | DESCRIPTION |
|---|---|
acompress_documents |
Async compress retrieved documents given the query context. |
validate_environment |
Validate that api key and python package exists in environment. |
validate_model_specified |
Validate that model is specified. |
rerank |
Returns an ordered list of documents ordered by their relevance to the |
compress_documents |
Compress documents using Cohere's rerank API. |
client
class-attribute
instance-attribute
¶
client: Any = None
Cohere client to use for compressing documents.
model
class-attribute
instance-attribute
¶
model: str | None = None
Model to use for reranking. Mandatory to specify the model name.
cohere_api_key
class-attribute
instance-attribute
¶
cohere_api_key: SecretStr | None = Field(
default_factory=secret_from_env("COHERE_API_KEY", default=None)
)
Cohere API key. Must be specified directly or via environment variable
COHERE_API_KEY.
base_url
class-attribute
instance-attribute
¶
base_url: str | None = None
Override the default Cohere API URL.
user_agent
class-attribute
instance-attribute
¶
user_agent: str = 'langchain:partner'
Identifier for the application making the request.
acompress_documents
async
¶
acompress_documents(
documents: Sequence[Document], query: str, callbacks: Callbacks | None = None
) -> Sequence[Document]
Async compress retrieved documents given the query context.
validate_environment
¶
validate_environment() -> Self
Validate that api key and python package exists in environment.
rerank
¶
rerank(
documents: Sequence[str | Document | dict],
query: str,
*,
rank_fields: Sequence[str] | None = None,
model: str | None = None,
top_n: int | None = -1,
max_tokens_per_doc: int | None = None,
) -> list[dict[str, Any]]
Returns an ordered list of documents ordered by their relevance to the provided query.
| PARAMETER | DESCRIPTION |
|---|---|
query
|
The query to use for reranking.
TYPE:
|
documents
|
A sequence of documents to rerank. |
rank_fields
|
A sequence of keys to use for reranking. |
top_n
|
The number of results to return. If
|
max_tokens_per_doc
|
Documents will be truncated to the specified number of
tokens. Defaults to
|
create_cohere_react_agent
¶
create_cohere_react_agent(
llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate
) -> Runnable
Create an agent that enables multiple tools to be used in sequence to complete a task.
| PARAMETER | DESCRIPTION |
|---|---|
llm
|
The
TYPE:
|
tools
|
Tools this agent has access to. |
prompt
|
The prompt to use.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Runnable
|
A |
Runnable
|
variables as the prompt passed in does and returns a |
Runnable
|
single |
Runnable
|
The |
Runnable
|
|
Runnable
|
|
Example
from langchain.agents import AgentExecutor
from langchain.prompts import ChatPromptTemplate
from langchain_cohere import ChatCohere, create_cohere_react_agent
prompt = ChatPromptTemplate.from_template("{input}")
tools = [] # Populate this with a list of tools you would like to use.
llm = ChatCohere()
agent = create_cohere_react_agent(
llm,
tools,
prompt
)
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({
"input": "In what year was the company that was founded as Sound of Music added to the S&P 500?",
})