CouchbaseVectorStore#

class langchain_couchbase.vectorstores.CouchbaseVectorStore(cluster: Cluster, bucket_name: str, scope_name: str, collection_name: str, embedding: Embeddings, index_name: str, *, text_key: str | None = 'text', embedding_key: str | None = 'embedding', scoped_index: bool = True)[source]#

__ModuleName__ vector store integration.

Setup:

Install langchain-couchbase and head over to the Couchbase [website](https://cloud.couchbase.com) and create a new connection, with a bucket, collection, and search index.

pip install -U langchain-couchbase
import getpass

COUCHBASE_CONNECTION_STRING = getpass.getpass("Enter the connection string for the Couchbase cluster: ")
DB_USERNAME = getpass.getpass("Enter the username for the Couchbase cluster: ")
DB_PASSWORD = getpass.getpass("Enter the password for the Couchbase cluster: ")
Key init args — indexing params:
embedding: Embeddings

Embedding function to use.

Key init args — client params:
cluster: Cluster

Couchbase cluster object with active connection.

bucket_name: str

Name of the bucket to store documents in.

scope_name: str

Name of the scope in the bucket to store documents in.

collection_name: str

Name of the collection in the scope to store documents in.

index_name: str

Name of the Search index to use.

Instantiate:
from datetime import timedelta
from langchain_openai import OpenAIEmbeddings
from couchbase.auth import PasswordAuthenticator
from couchbase.cluster import Cluster
from couchbase.options import ClusterOptions

auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)
options = ClusterOptions(auth)
cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)

# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))

BUCKET_NAME = "langchain_bucket"
SCOPE_NAME = "_default"
COLLECTION_NAME = "default"
SEARCH_INDEX_NAME = "langchain-test-index"

vector_store = CouchbaseVectorStore(
    cluster=cluster,
    bucket_name=BUCKET_NAME,
    scope_name=SCOPE_NAME,
    collection_name=COLLECTION_NAME,
    embedding=embeddings,
    index_name=SEARCH_INDEX_NAME,
)
Add Documents:
from langchain_core.documents import Document

document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")

documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
Delete Documents:
vector_store.delete(ids=["3"])

# TODO: Fill out with example output. Search:

results = vector_store.similarity_search(query="thud",k=1)
for doc in results:
    print(f"* {doc.page_content} [{doc.metadata}]")
# TODO: Example output

# TODO: Fill out with relevant variables and example output. Search with filter:

# TODO: Update filter to correct format
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
for doc in results:
    print(f"* {doc.page_content} [{doc.metadata}]")
# TODO: Example output

# TODO: Fill out with example output. Search with score:

results = vector_store.similarity_search_with_score(query="qux",k=1)
for doc, score in results:
    print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
# TODO: Example output

# TODO: Fill out with example output. Async:

# add documents
# await vector_store.aadd_documents(documents=documents, ids=ids)

# delete documents
# await vector_store.adelete(ids=["3"])

# search
# results = vector_store.asimilarity_search(query="thud",k=1)

# search with score
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
for doc,score in results:
    print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
# TODO: Example output

# TODO: Fill out with example output. Use as Retriever:

retriever = vector_store.as_retriever(
    search_type="mmr",
    search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
# TODO: Example output

Initialize the Couchbase Vector Store.

Parameters:
  • cluster (Cluster) – couchbase cluster object with active connection.

  • bucket_name (str) – name of bucket to store documents in.

  • scope_name (str) – name of scope in the bucket to store documents in.

  • collection_name (str) – name of collection in the scope to store documents in

  • embedding (Embeddings) – embedding function to use.

  • index_name (str) – name of the Search index to use.

  • text_key (optional[str]) – key in document to use as text. Set to text by default.

  • embedding_key (optional[str]) – key in document to use for the embeddings. Set to embedding by default.

  • scoped_index (optional[bool]) – specify whether the index is a scoped index. Set to True by default.

Attributes

DEFAULT_BATCH_SIZE

embeddings

Return the query embedding object.

Methods

__init__(cluster, bucket_name, scope_name, ...)

Initialize the Couchbase Vector Store.

aadd_documents(documents, **kwargs)

Async run more documents through the embeddings and add to the vectorstore.

aadd_texts(texts[, metadatas, ids])

Async run more texts through the embeddings and add to the vectorstore.

add_documents(documents, **kwargs)

Add or update documents in the vectorstore.

add_texts(texts[, metadatas, ids, batch_size])

Run texts through the embeddings and persist in vectorstore.

adelete([ids])

Async delete by vector ID or other criteria.

afrom_documents(documents, embedding, **kwargs)

Async return VectorStore initialized from documents and embeddings.

afrom_texts(texts, embedding[, metadatas, ids])

Async return VectorStore initialized from texts and embeddings.

aget_by_ids(ids, /)

Async get documents by their IDs.

amax_marginal_relevance_search(query[, k, ...])

Async return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector(...)

Async return docs selected using the maximal marginal relevance.

as_retriever(**kwargs)

Return VectorStoreRetriever initialized from this VectorStore.

asearch(query, search_type, **kwargs)

Async return docs most similar to query using a specified search type.

asimilarity_search(query[, k])

Async return docs most similar to query.

asimilarity_search_by_vector(embedding[, k])

Async return docs most similar to embedding vector.

asimilarity_search_with_relevance_scores(query)

Async return docs and relevance scores in the range [0, 1].

asimilarity_search_with_score(*args, **kwargs)

Async run similarity search with distance.

delete([ids])

Delete documents from the vector store by ids.

from_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

from_texts(texts, embedding[, metadatas])

Construct a Couchbase vector store from a list of texts.

get_by_ids(ids, /)

Get documents by their IDs.

max_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

search(query, search_type, **kwargs)

Return docs most similar to query using a specified search type.

similarity_search(query[, k, search_options])

Return documents most similar to embedding vector with their scores.

similarity_search_by_vector(embedding[, k, ...])

Return documents that are most similar to the vector embedding.

similarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1].

similarity_search_with_score(query[, k, ...])

Return documents that are most similar to the query with their scores.

similarity_search_with_score_by_vector(embedding)

Return docs most similar to embedding vector with their scores.

__init__(cluster: Cluster, bucket_name: str, scope_name: str, collection_name: str, embedding: Embeddings, index_name: str, *, text_key: str | None = 'text', embedding_key: str | None = 'embedding', scoped_index: bool = True) None[source]#

Initialize the Couchbase Vector Store.

Parameters:
  • cluster (Cluster) – couchbase cluster object with active connection.

  • bucket_name (str) – name of bucket to store documents in.

  • scope_name (str) – name of scope in the bucket to store documents in.

  • collection_name (str) – name of collection in the scope to store documents in

  • embedding (Embeddings) – embedding function to use.

  • index_name (str) – name of the Search index to use.

  • text_key (optional[str]) – key in document to use as text. Set to text by default.

  • embedding_key (optional[str]) – key in document to use for the embeddings. Set to embedding by default.

  • scoped_index (optional[bool]) – specify whether the index is a scoped index. Set to True by default.

Return type:

None

async aadd_documents(documents: list[Document], **kwargs: Any) list[str]#

Async run more documents through the embeddings and add to the vectorstore.

Parameters:
  • documents (list[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns:

List of IDs of the added texts.

Raises:

ValueError – If the number of IDs does not match the number of documents.

Return type:

list[str]

async aadd_texts(texts: Iterable[str], metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) list[str]#

Async run more texts through the embeddings and add to the vectorstore.

Parameters:
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (list[dict] | None) – Optional list of metadatas associated with the texts. Default is None.

  • ids (list[str] | None) – Optional list

  • **kwargs (Any) – vectorstore specific parameters.

Returns:

List of ids from adding the texts into the vectorstore.

Raises:
  • ValueError – If the number of metadatas does not match the number of texts.

  • ValueError – If the number of ids does not match the number of texts.

Return type:

list[str]

add_documents(documents: list[Document], **kwargs: Any) list[str]#

Add or update documents in the vectorstore.

Parameters:
  • documents (list[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.

Returns:

List of IDs of the added texts.

Raises:

ValueError – If the number of ids does not match the number of documents.

Return type:

list[str]

add_texts(texts: Iterable[str], metadatas: List[dict] | None = None, ids: List[str] | None = None, batch_size: int | None = None, **kwargs: Any) List[str][source]#

Run texts through the embeddings and persist in vectorstore.

If the document IDs are passed, the existing documents (if any) will be overwritten with the new ones.

Parameters:
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[Dict]]) – Optional list of metadatas associated with the texts.

  • ids (Optional[List[str]]) – Optional list of ids associated with the texts. IDs have to be unique strings across the collection. If it is not specified uuids are generated and used as ids.

  • batch_size (Optional[int]) – Optional batch size for bulk insertions. Default is 100.

  • kwargs (Any)

Returns:

List of ids from adding the texts into the vectorstore.

Return type:

List[str]

async adelete(ids: list[str] | None = None, **kwargs: Any) bool | None#

Async delete by vector ID or other criteria.

Parameters:
  • ids (list[str] | None) – List of ids to delete. If None, delete all. Default is None.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns:

True if deletion is successful, False otherwise, None if not implemented.

Return type:

Optional[bool]

async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST#

Async return VectorStore initialized from documents and embeddings.

Parameters:
  • documents (list[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns:

VectorStore initialized from documents and embeddings.

Return type:

VectorStore

async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST#

Async return VectorStore initialized from texts and embeddings.

Parameters:
  • texts (list[str]) – Texts to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • metadatas (list[dict] | None) – Optional list of metadatas associated with the texts. Default is None.

  • ids (list[str] | None) – Optional list of IDs associated with the texts.

  • kwargs (Any) – Additional keyword arguments.

Returns:

VectorStore initialized from texts and embeddings.

Return type:

VectorStore

async aget_by_ids(ids: Sequence[str], /) list[Document]#

Async get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters:

ids (Sequence[str]) – List of ids to retrieve.

Returns:

List of Documents.

Return type:

list[Document]

Added in version 0.2.11.

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any)

Returns:

List of Documents selected by maximal marginal relevance.

Return type:

list[Document]

async amax_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document]#

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:
  • embedding (list[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Documents selected by maximal marginal relevance.

Return type:

list[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever#

Return VectorStoreRetriever initialized from this VectorStore.

Parameters:

**kwargs (Any) –

Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that

the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

search_kwargs (Optional[Dict]): Keyword arguments to pass to the
search function. Can include things like:

k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

for similarity_score_threshold

fetch_k: Amount of documents to pass to MMR algorithm

(Default: 20)

lambda_mult: Diversity of results returned by MMR;

1 for minimum diversity and 0 for maximum. (Default: 0.5)

filter: Filter by document metadata

Returns:

Retriever class for VectorStore.

Return type:

VectorStoreRetriever

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) list[Document]#

Async return docs most similar to query using a specified search type.

Parameters:
  • query (str) – Input text.

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Documents most similar to the query.

Raises:

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type:

list[Document]

Async return docs most similar to query.

Parameters:
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Documents most similar to the query.

Return type:

list[Document]

async asimilarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document]#

Async return docs most similar to embedding vector.

Parameters:
  • embedding (list[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Documents most similar to the query vector.

Return type:

list[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

Async return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters:
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns:

List of Tuples of (doc, similarity_score)

Return type:

list[tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) list[tuple[Document, float]]#

Async run similarity search with distance.

Parameters:
  • *args (Any) – Arguments to pass to the search method.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Tuples of (doc, similarity_score).

Return type:

list[tuple[Document, float]]

delete(ids: List[str] | None = None, **kwargs: Any) bool | None[source]#

Delete documents from the vector store by ids.

Parameters:
  • ids (List[str]) – List of IDs of the documents to delete.

  • batch_size (Optional[int]) – Optional batch size for bulk deletions.

  • kwargs (Any)

Returns:

True if all the documents were deleted successfully, False otherwise.

Return type:

bool

classmethod from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST#

Return VectorStore initialized from documents and embeddings.

Parameters:
  • documents (list[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns:

VectorStore initialized from documents and embeddings.

Return type:

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[dict] | None = None, **kwargs: Any) CouchbaseVectorStore[source]#

Construct a Couchbase vector store from a list of texts.

Example


from langchain_couchbase import CouchbaseVectorStore from langchain_openai import OpenAIEmbeddings

from couchbase.cluster import Cluster from couchbase.auth import PasswordAuthenticator from couchbase.options import ClusterOptions from datetime import timedelta

auth = PasswordAuthenticator(username, password) options = ClusterOptions(auth) connect_string = “couchbases://localhost” cluster = Cluster(connect_string, options)

# Wait until the cluster is ready for use. cluster.wait_until_ready(timedelta(seconds=5))

embeddings = OpenAIEmbeddings()

texts = [“hello”, “world”]

vectorstore = CouchbaseVectorStore.from_texts(

texts, embedding=embeddings, cluster=cluster, bucket_name=””, scope_name=””, collection_name=””, index_name=”vector-index”,

)

Parameters:
  • texts (List[str]) – list of texts to add to the vector store.

  • embedding (Embeddings) – embedding function to use.

  • metadatas (optional[List[Dict]) – list of metadatas to add to documents.

  • **kwargs – Keyword arguments used to initialize the vector store with and/or passed to add_texts method. Check the constructor and/or add_texts for the list of accepted arguments.

Returns:

A Couchbase vector store.

Return type:

CouchbaseVectorStore

get_by_ids(ids: Sequence[str], /) list[Document]#

Get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters:

ids (Sequence[str]) – List of ids to retrieve.

Returns:

List of Documents.

Return type:

list[Document]

Added in version 0.2.11.

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Documents selected by maximal marginal relevance.

Return type:

list[Document]

max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document]#

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters:
  • embedding (list[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Documents selected by maximal marginal relevance.

Return type:

list[Document]

search(query: str, search_type: str, **kwargs: Any) list[Document]#

Return docs most similar to query using a specified search type.

Parameters:
  • query (str) – Input text

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns:

List of Documents most similar to the query.

Raises:

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type:

list[Document]

Return documents most similar to embedding vector with their scores.

Parameters:
  • query (str) – Query to look up for similar documents

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to all the fields stored in the index.

  • kwargs (Any)

Returns:

List of Documents most similar to the query.

Return type:

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, search_options: Dict[str, Any] | None = {}, **kwargs: Any) List[Document][source]#

Return documents that are most similar to the vector embedding.

Parameters:
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary.

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to document text and metadata fields.

  • kwargs (Any)

Returns:

List of Documents most similar to the query.

Return type:

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters:
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs.

Returns:

List of Tuples of (doc, similarity_score).

Return type:

list[tuple[Document, float]]

similarity_search_with_score(query: str, k: int = 4, search_options: Dict[str, Any] | None = {}, **kwargs: Any) List[Tuple[Document, float]][source]#

Return documents that are most similar to the query with their scores.

Parameters:
  • query (str) – Query to look up for similar documents

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary.

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to text and metadata fields.

  • kwargs (Any)

Returns:

List of (Document, score) that are most similar to the query.

Return type:

List[Tuple[Document, float]]

similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, search_options: Dict[str, Any] | None = {}, **kwargs: Any) List[Tuple[Document, float]][source]#

Return docs most similar to embedding vector with their scores.

Parameters:
  • embedding (List[float]) – Embedding vector to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary.

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to all the fields stored in the index.

  • kwargs (Any)

Returns:

List of (Document, score) that are the most similar to the query vector.

Return type:

List[Tuple[Document, float]]