DatabricksEmbeddings#
- class langchain_databricks.embeddings.DatabricksEmbeddings[source]#
Bases:
Embeddings
,BaseModel
Databricks embedding model integration.
- Setup:
Install
langchain-databricks
.pip install -U langchain-databricks
If you are outside Databricks, set the Databricks workspace hostname and personal access token to environment variables:
export DATABRICKS_HOSTNAME="https://your-databricks-workspace" export DATABRICKS_TOKEN="your-personal-access-token"
- Key init args — completion params:
- endpoint: str
Name of Databricks Model Serving endpoint to query.
- target_uri: str
The target URI to use. Defaults to
databricks
.- query_params: Dict[str, str]
The parameters to use for queries.
- documents_params: Dict[str, str]
The parameters to use for documents.
- Instantiate:
- Embed single text:
- param documents_params: Dict[str, Any] = {}#
The target URI to use.
- param endpoint: str [Required]#
The endpoint to use.
- param query_params: Dict[str, Any] = {}#
The parameters to use for documents.
- param target_uri: str = 'databricks'#
The parameters to use for queries.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
Examples using DatabricksEmbeddings