HuggingFaceEmbeddings#

class langchain_huggingface.embeddings.huggingface.HuggingFaceEmbeddings[source]#

Bases: BaseModel, Embeddings

HuggingFace sentence_transformers embedding models.

To use, you should have the sentence_transformers python package installed.

Example

from langchain_huggingface import HuggingFaceEmbeddings

model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

Initialize the sentence_transformer.

param cache_folder: str | None = None#

Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.

param encode_kwargs: Dict[str, Any] [Optional]#

Keyword arguments to pass when calling the encode method of the Sentence Transformer model, such as prompt_name, prompt, batch_size, precision, normalize_embeddings, and more. See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode

param model_kwargs: Dict[str, Any] [Optional]#

Keyword arguments to pass to the Sentence Transformer model, such as device, prompts, default_prompt_name, revision, trust_remote_code, or token. See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer

param model_name: str = 'sentence-transformers/all-mpnet-base-v2'#

Model name to use.

param multi_process: bool = False#

Run encode() on multiple GPUs.

param show_progress: bool = False#

Whether to show a progress bar.

async aembed_documents(texts: list[str]) list[list[float]]#

Asynchronous Embed search docs.

Parameters:

texts (list[str]) – List of text to embed.

Returns:

List of embeddings.

Return type:

list[list[float]]

async aembed_query(text: str) list[float]#

Asynchronous Embed query text.

Parameters:

text (str) – Text to embed.

Returns:

Embedding.

Return type:

list[float]

embed_documents(texts: List[str]) List[List[float]][source]#

Compute doc embeddings using a HuggingFace transformer model.

Parameters:

texts (List[str]) – The list of texts to embed.

Returns:

List of embeddings, one for each text.

Return type:

List[List[float]]

embed_query(text: str) List[float][source]#

Compute query embeddings using a HuggingFace transformer model.

Parameters:

text (str) – The text to embed.

Returns:

Embeddings for the text.

Return type:

List[float]

Examples using HuggingFaceEmbeddings