WatsonxToolkit#
- class langchain_ibm.toolkit.WatsonxToolkit[source]#
Bases:
BaseToolkit
IBM watsonx.ai Toolkit.
Setup
To use, you should have
langchain_ibm
python package installed, and the environment variableWATSONX_APIKEY
set with your API key, or pass it as a named parameter to the constructor.pip install -U langchain-ibm export WATSONX_APIKEY="your-api-key"
Example
from langchain_ibm import WatsonxToolkit watsonx_toolkit = WatsonxToolkit( url="https://us-south.ml.cloud.ibm.com", apikey="*****", project_id="*****", ) tools = watsonx_toolkit.get_tools() google_search = watsonx_toolkit.get_tool("GoogleSearch") config = { "maxResults": 3, } input = { "input": "Search IBM", "config": config, } search_result = google_search.invoke(input=input)
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param apikey: SecretStr | None [Optional]#
API key to the watsonx.ai Runtime.
- param project_id: str | None = None#
ID of the watsonx.ai Studio project.
- param space_id: str | None = None#
ID of the watsonx.ai Studio space.
- param token: SecretStr | None [Optional]#
Token to the watsonx.ai Runtime.
- param url: SecretStr [Optional]#
URL to the watsonx.ai Runtime.
- param verify: str | bool | None = None#
You can pass one of following as verify: * the path to a CA_BUNDLE file * the path of directory with certificates of trusted CAs * True - default path to truststore will be taken * False - no verification will be made
- param watsonx_client: APIClient | None = None#
- get_tool(tool_name: str) WatsonxTool [source]#
Get the tool with a given name.
- Parameters:
tool_name (str)
- Return type:
- get_tools() list[WatsonxTool] [source]#
Get the tools in the toolkit.
- Return type:
list[WatsonxTool]