StructuredChatAgent#
- class langchain.agents.structured_chat.base.StructuredChatAgent[source]#
Bases:
Agent
Deprecated since version 0.1.0: Use
create_structured_chat_agent()
instead.Structured Chat Agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param allowed_tools: List[str] | None = None#
Allowed tools for the agent. If None, all tools are allowed.
- param output_parser: AgentOutputParser [Optional]#
Output parser for the agent.
- async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) AgentAction | AgentFinish #
Async given input, decided what to do.
- Parameters:
intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations.
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to run.
**kwargs (Any) β User inputs.
- Returns:
Action specifying what tool to use.
- Return type:
- classmethod create_prompt(tools: Sequence[BaseTool], prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\nΒ "action": $TOOL_NAME,\nΒ "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\nΒ "action": "Final Answer",\nΒ "action_input": "Final response to human"\n}}}}\n```', input_variables: List[str] | None = None, memory_prompts: List[BasePromptTemplate] | None = None) BasePromptTemplate [source]#
Create a prompt for this class.
- Parameters:
tools (Sequence[BaseTool]) β Tools to use.
prefix (str)
suffix (str)
human_message_template (str)
format_instructions (str)
input_variables (List[str] | None)
memory_prompts (List[BasePromptTemplate] | None)
- Returns:
Prompt template.
- Return type:
- classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: BaseCallbackManager | None = None, output_parser: AgentOutputParser | None = None, prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\nΒ "action": $TOOL_NAME,\nΒ "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\nΒ "action": "Final Answer",\nΒ "action_input": "Final response to human"\n}}}}\n```', input_variables: List[str] | None = None, memory_prompts: List[BasePromptTemplate] | None = None, **kwargs: Any) Agent [source]#
Construct an agent from an LLM and tools.
- Parameters:
llm (BaseLanguageModel)
tools (Sequence[BaseTool])
callback_manager (BaseCallbackManager | None)
output_parser (AgentOutputParser | None)
prefix (str)
suffix (str)
human_message_template (str)
format_instructions (str)
input_variables (List[str] | None)
memory_prompts (List[BasePromptTemplate] | None)
kwargs (Any)
- Return type:
- get_allowed_tools() List[str] | None #
Get allowed tools.
- Return type:
List[str] | None
- get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) Dict[str, Any] #
Create the full inputs for the LLMChain from intermediate steps.
- Parameters:
intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations.
**kwargs (Any) β User inputs.
- Returns:
Full inputs for the LLMChain.
- Return type:
Dict[str, Any]
- plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) AgentAction | AgentFinish #
Given input, decided what to do.
- Parameters:
intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations.
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to run.
**kwargs (Any) β User inputs.
- Returns:
Action specifying what tool to use.
- Return type:
- return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) AgentFinish #
Return response when agent has been stopped due to max iterations.
- Parameters:
early_stopping_method (str) β Method to use for early stopping.
intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations.
**kwargs (Any) β User inputs.
- Returns:
Agent finish object.
- Return type:
- Raises:
ValueError β If early_stopping_method is not in [βforceβ, βgenerateβ].
- save(file_path: Path | str) None #
Save the agent.
- Parameters:
file_path (Path | str) β Path to file to save the agent to.
- Return type:
None
Example: .. code-block:: python
# If working with agent executor agent.agent.save(file_path=βpath/agent.yamlβ)
- tool_run_logging_kwargs() Dict #
Return logging kwargs for tool run.
- Return type:
Dict
- property llm_prefix: str#
Prefix to append the llm call with.
- property observation_prefix: str#
Prefix to append the observation with.
- property return_values: List[str]#
Return values of the agent.
Examples using StructuredChatAgent