init_chat_model#
- langchain.chat_models.base.init_chat_model(model: str, *, model_provider: str | None = None, configurable_fields: Literal[None] = None, config_prefix: str | None = None, **kwargs: Any) BaseChatModel [source]#
- langchain.chat_models.base.init_chat_model(model: Literal[None] = None, *, model_provider: str | None = None, configurable_fields: Literal[None] = None, config_prefix: str | None = None, **kwargs: Any) _ConfigurableModel
- langchain.chat_models.base.init_chat_model(model: str | None = None, *, model_provider: str | None = None, configurable_fields: Literal['any'] | List[str] | Tuple[str, ...] = None, config_prefix: str | None = None, **kwargs: Any) _ConfigurableModel
Initialize a ChatModel from the model name and provider.
Note: Must have the integration package corresponding to the model provider installed.
- Parameters:
model – The name of the model, e.g. “gpt-4o”, “claude-3-opus-20240229”.
model_provider –
The model provider. Supported model_provider values and the corresponding integration package are:
’openai’ -> langchain-openai
’anthropic’ -> langchain-anthropic
’azure_openai’ -> langchain-openai
’google_vertexai’ -> langchain-google-vertexai
’google_genai’ -> langchain-google-genai
’bedrock’ -> langchain-aws
’bedrock_converse’ -> langchain-aws
’cohere’ -> langchain-cohere
’fireworks’ -> langchain-fireworks
’together’ -> langchain-together
’mistralai’ -> langchain-mistralai
’huggingface’ -> langchain-huggingface
’groq’ -> langchain-groq
’ollama’ -> langchain-ollama
’google_anthropic_vertex’ -> langchain-google-vertexai
Will attempt to infer model_provider from model if not specified. The following providers will be inferred based on these model prefixes:
’gpt-3…’ | ‘gpt-4…’ | ‘o1…’ -> ‘openai’
’claude…’ -> ‘anthropic’
’amazon….’ -> ‘bedrock’
’gemini…’ -> ‘google_vertexai’
’command…’ -> ‘cohere’
’accounts/fireworks…’ -> ‘fireworks’
’mistral…’ -> ‘mistralai’
configurable_fields –
Which model parameters are configurable:
None: No configurable fields.
”any”: All fields are configurable. See Security Note below.
Union[List[str], Tuple[str, …]]: Specified fields are configurable.
Fields are assumed to have config_prefix stripped if there is a config_prefix. If model is specified, then defaults to None. If model is not specified, then defaults to
("model", "model_provider")
.*Security Note*: Setting
configurable_fields="any"
means fields like api_key, base_url, etc. can be altered at runtime, potentially redirecting model requests to a different service/user. Make sure that if you’re accepting untrusted configurations that you enumerate theconfigurable_fields=(...)
explicitly.config_prefix – If config_prefix is a non-empty string then model will be configurable at runtime via the
config["configurable"]["{config_prefix}_{param}"]
keys. If config_prefix is an empty string then model will be configurable viaconfig["configurable"]["{param}"]
.temperature – Model temperature.
max_tokens – Max output tokens.
timeout – The maximum time (in seconds) to wait for a response from the model before canceling the request.
max_retries – The maximum number of attempts the system will make to resend a request if it fails due to issues like network timeouts or rate limits.
base_url – The URL of the API endpoint where requests are sent.
rate_limiter – A
BaseRateLimiter
to space out requests to avoid exceeding rate limits.kwargs – Additional model-specific keyword args to pass to
<<selected ChatModel>>.__init__(model=model_name, **kwargs)
.
- Returns:
A BaseChatModel corresponding to the model_name and model_provider specified if configurability is inferred to be False. If configurable, a chat model emulator that initializes the underlying model at runtime once a config is passed in.
- Raises:
ValueError – If model_provider cannot be inferred or isn’t supported.
ImportError – If the model provider integration package is not installed.
Init non-configurable model
# pip install langchain langchain-openai langchain-anthropic langchain-google-vertexai from langchain.chat_models import init_chat_model gpt_4o = init_chat_model("gpt-4o", model_provider="openai", temperature=0) claude_opus = init_chat_model("claude-3-opus-20240229", model_provider="anthropic", temperature=0) gemini_15 = init_chat_model("gemini-1.5-pro", model_provider="google_vertexai", temperature=0) gpt_4o.invoke("what's your name") claude_opus.invoke("what's your name") gemini_15.invoke("what's your name")
Partially configurable model with no default
# pip install langchain langchain-openai langchain-anthropic from langchain.chat_models import init_chat_model # We don't need to specify configurable=True if a model isn't specified. configurable_model = init_chat_model(temperature=0) configurable_model.invoke( "what's your name", config={"configurable": {"model": "gpt-4o"}} ) # GPT-4o response configurable_model.invoke( "what's your name", config={"configurable": {"model": "claude-3-5-sonnet-20240620"}} ) # claude-3.5 sonnet response
Fully configurable model with a default
# pip install langchain langchain-openai langchain-anthropic from langchain.chat_models import init_chat_model configurable_model_with_default = init_chat_model( "gpt-4o", model_provider="openai", configurable_fields="any", # this allows us to configure other params like temperature, max_tokens, etc at runtime. config_prefix="foo", temperature=0 ) configurable_model_with_default.invoke("what's your name") # GPT-4o response with temperature 0 configurable_model_with_default.invoke( "what's your name", config={ "configurable": { "foo_model": "claude-3-5-sonnet-20240620", "foo_model_provider": "anthropic", "foo_temperature": 0.6 } } ) # Claude-3.5 sonnet response with temperature 0.6
Bind tools to a configurable model
You can call any ChatModel declarative methods on a configurable model in the same way that you would with a normal model.
# pip install langchain langchain-openai langchain-anthropic from langchain.chat_models import init_chat_model from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field(..., description="The city and state, e.g. San Francisco, CA") class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field(..., description="The city and state, e.g. San Francisco, CA") configurable_model = init_chat_model( "gpt-4o", configurable_fields=("model", "model_provider"), temperature=0 ) configurable_model_with_tools = configurable_model.bind_tools([GetWeather, GetPopulation]) configurable_model_with_tools.invoke( "Which city is hotter today and which is bigger: LA or NY?" ) # GPT-4o response with tool calls configurable_model_with_tools.invoke( "Which city is hotter today and which is bigger: LA or NY?", config={"configurable": {"model": "claude-3-5-sonnet-20240620"}} ) # Claude-3.5 sonnet response with tools
Added in version 0.2.7.
Changed in version 0.2.8: Support for
configurable_fields
andconfig_prefix
added.Changed in version 0.2.12: Support for ChatOllama via langchain-ollama package added (langchain_ollama.ChatOllama). Previously, the now-deprecated langchain-community version of Ollama was imported (langchain_community.chat_models.ChatOllama).
Support for langchain_aws.ChatBedrockConverse added (model_provider=”bedrock_converse”).
Changed in version 0.3.5: Out of beta.
Examples using init_chat_model