NVIDIAEmbeddings#
- class langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Client to NVIDIA embeddings models.
Fields: - model: str, the name of the model to use - truncate: “NONE”, “START”, “END”, truncate input text if it exceeds the model’s
maximum token length. Default is “NONE”, which raises an error if an input is too long.
Create a new NVIDIAEmbeddings embedder.
This class provides access to a NVIDIA NIM for embedding. By default, it connects to a hosted NIM, but can be configured to connect to a local NIM using the base_url parameter. An API key is required to connect to the hosted NIM.
- Parameters:
model (str) – The model to use for embedding.
nvidia_api_key (str) – The API key to use for connecting to the hosted NIM.
api_key (str) – Alternative to nvidia_api_key.
base_url (str) – The base URL of the NIM to connect to. Format for base URL is http://host:port
trucate (str) – “NONE”, “START”, “END”, truncate input text if it exceeds the model’s context length. Default is “NONE”, which raises an error if an input is too long.
API Key: - The recommended way to provide the API key is through the NVIDIA_API_KEY
environment variable.
Base URL: - Connect to a self-hosted model with NVIDIA NIM using the base_url arg to
link to the local host at localhost:8000: embedder = NVIDIAEmbeddings(base_url=”http://localhost:8080/v1”)
- param base_url: str | None = None#
Base url for model listing an invocation
- param max_batch_size: int = 50#
- param model: str | None = None#
Name of the model to invoke
- param truncate: Literal['NONE', 'START', 'END'] = 'NONE'#
Truncate input text if it exceeds the model’s maximum token length. Default is ‘NONE’, which raises an error if an input is too long.
- async aembed_documents(texts: list[str]) list[list[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (list[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
list[list[float]]
- async aembed_query(text: str) list[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
list[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Input pathway for document embeddings.
- Parameters:
texts (List[str])
- Return type:
List[List[float]]
- embed_query(text: str) List[float] [source]#
Input pathway for query embeddings.
- Parameters:
text (str)
- Return type:
List[float]
- classmethod get_available_models(**kwargs: Any) List[Model] [source]#
Get a list of available models that work with NVIDIAEmbeddings.
- Parameters:
kwargs (Any)
- Return type:
List[Model]
- property available_models: List[Model]#
Get a list of available models that work with NVIDIAEmbeddings.