EmbeddingsVectorizer#
- class langchain_redis.cache.EmbeddingsVectorizer(embeddings: Embeddings)[source]#
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
Attributes
type
Methods
__init__
(embeddings)Create a new model by parsing and validating input data from keyword arguments.
aembed
(text[, dtype])aembed_many
(texts[, dtype])batchify
(seq, size[, preprocess])check_dims
(value)Ensures the dims are a positive integer.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
embed
(text[, dtype])embed_many
(texts[, dtype])encode
(texts, dtype, **kwargs)from_orm
(obj)json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)- Parameters:
embeddings (Embeddings)
- __init__(embeddings: Embeddings)[source]#
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- Parameters:
embeddings (Embeddings)
- async aembed(text: str, dtype: str | VectorDataType = 'float32', **kwargs: Any) List[float] [source]#
- Parameters:
text (str)
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[float]
- async aembed_many(texts: List[str], dtype: str | VectorDataType = 'float32', **kwargs: Any) List[List[float]] [source]#
- Parameters:
texts (List[str])
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[List[float]]
- batchify(seq: list, size: int, preprocess: Callable | None = None)#
- Parameters:
seq (list)
size (int)
preprocess (Callable | None)
- classmethod check_dims(value)#
Ensures the dims are a positive integer.
- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Parameters:
_fields_set (SetStr | None)
values (Any)
- Return type:
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – fields to include in new model
exclude (AbstractSetIntStr | MappingIntStrAny | None) – fields to exclude from new model, as with values this takes precedence over include
update (DictStrAny | None) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model)
- Returns:
new model instance
- Return type:
- dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None)
exclude (AbstractSetIntStr | MappingIntStrAny | None)
by_alias (bool)
skip_defaults (bool | None)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
DictStrAny
- embed(text: str, dtype: str | VectorDataType = 'float32', **kwargs: Any) List[float] [source]#
- Parameters:
text (str)
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[float]
- embed_many(texts: List[str], dtype: str | VectorDataType = 'float32', **kwargs: Any) List[List[float]] [source]#
- Parameters:
texts (List[str])
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[List[float]]
- encode(texts: str | List[str], dtype: str | VectorDataType, **kwargs: Any) ndarray [source]#
- Parameters:
texts (str | List[str])
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
ndarray
- json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None)
exclude (AbstractSetIntStr | MappingIntStrAny | None)
by_alias (bool)
skip_defaults (bool | None)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
encoder (Callable[[Any], Any] | None)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
str
- classmethod parse_file(path: str | Path, *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model #
- Parameters:
path (str | Path)
content_type (str)
encoding (str)
proto (Protocol)
allow_pickle (bool)
- Return type:
- classmethod parse_raw(b: str | bytes, *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model #
- Parameters:
b (str | bytes)
content_type (str)
encoding (str)
proto (Protocol)
allow_pickle (bool)
- Return type:
- classmethod schema(by_alias: bool = True, ref_template: str = '#/definitions/{model}') DictStrAny #
- Parameters:
by_alias (bool)
ref_template (str)
- Return type:
DictStrAny
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/definitions/{model}', **dumps_kwargs: Any) str #
- Parameters:
by_alias (bool)
ref_template (str)
dumps_kwargs (Any)
- Return type:
str
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- Parameters:
localns (Any)
- Return type:
None