maximal_marginal_relevance#
- langchain_redis.vectorstores.maximal_marginal_relevance(query_embedding: ndarray, embedding_list: List[ndarray], lambda_mult: float = 0.5, k: int = 4) List[int] [source]#
Calculate maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to the query AND diversity among selected documents.
- Parameters:
query_embedding (ndarray) – Embedding of the query text.
embedding_list (List[ndarray]) – List of embeddings to select from.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results, where 0 corresponds to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
k (int) – Number of results to return. Defaults to 4.
- Returns:
List of indices of selected embeddings.
- Return type:
List[int]
Example
from langchain_redis import RedisVectorStore from langchain_openai import OpenAIEmbeddings import numpy as np embeddings = OpenAIEmbeddings() vector_store = RedisVectorStore( index_name="langchain-demo", embedding=embeddings, redis_url="redis://localhost:6379", ) query = "What is the capital of France?" query_embedding = embeddings.embed_query(query) # Assuming you have a list of document embeddings doc_embeddings = [embeddings.embed_query(doc) for doc in documents] selected_indices = vector_store.maximal_marginal_relevance( query_embedding=np.array(query_embedding), embedding_list=[np.array(emb) for emb in doc_embeddings], lambda_mult=0.5, k=2 ) for idx in selected_indices: print(f"Selected document: {documents[idx]}")