JSFrameworkTextSplitter#

class langchain_text_splitters.jsx.JSFrameworkTextSplitter(separators: List[str] | None = None, chunk_size: int = 2000, chunk_overlap: int = 0, **kwargs: Any)[source]#

Text splitter that handles React (JSX), Vue, and Svelte code.

This splitter extends RecursiveCharacterTextSplitter to handle React (JSX), Vue, and Svelte code by: 1. Detecting and extracting custom component tags from the text 2. Using those tags as additional separators along with standard JS syntax

The splitter combines: - Custom component tags as separators (e.g. <Component, <div) - JavaScript syntax elements (function, const, if, etc) - Standard text splitting on newlines

This allows chunks to break at natural boundaries in React, Vue, and Svelte component code.

Initialize the JS Framework text splitter.

Parameters:
  • separators (List[str] | None) – Optional list of custom separator strings to use

  • chunk_size (int) – Maximum size of chunks to return

  • chunk_overlap (int) – Overlap in characters between chunks

  • **kwargs (Any) – Additional arguments to pass to parent class

Methods

__init__([separators, chunk_size, chunk_overlap])

Initialize the JS Framework text splitter.

atransform_documents(documents, **kwargs)

Asynchronously transform a list of documents.

create_documents(texts[, metadatas])

Create documents from a list of texts.

from_huggingface_tokenizer(tokenizer, **kwargs)

Text splitter that uses HuggingFace tokenizer to count length.

from_language(language, **kwargs)

Return an instance of this class based on a specific language.

from_tiktoken_encoder([encoding_name, ...])

Text splitter that uses tiktoken encoder to count length.

get_separators_for_language(language)

Retrieve a list of separators specific to the given language.

split_documents(documents)

Split documents.

split_text(text)

Split text into chunks.

transform_documents(documents, **kwargs)

Transform sequence of documents by splitting them.

__init__(separators: List[str] | None = None, chunk_size: int = 2000, chunk_overlap: int = 0, **kwargs: Any) None[source]#

Initialize the JS Framework text splitter.

Parameters:
  • separators (List[str] | None) – Optional list of custom separator strings to use

  • chunk_size (int) – Maximum size of chunks to return

  • chunk_overlap (int) – Overlap in characters between chunks

  • **kwargs (Any) – Additional arguments to pass to parent class

Return type:

None

async atransform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document]#

Asynchronously transform a list of documents.

Parameters:
  • documents (Sequence[Document]) – A sequence of Documents to be transformed.

  • kwargs (Any)

Returns:

A sequence of transformed Documents.

Return type:

Sequence[Document]

create_documents(texts: List[str], metadatas: List[dict] | None = None) List[Document]#

Create documents from a list of texts.

Parameters:
  • texts (List[str])

  • metadatas (List[dict] | None)

Return type:

List[Document]

classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) TextSplitter#

Text splitter that uses HuggingFace tokenizer to count length.

Parameters:
  • tokenizer (Any)

  • kwargs (Any)

Return type:

TextSplitter

classmethod from_language(language: Language, **kwargs: Any) RecursiveCharacterTextSplitter#

Return an instance of this class based on a specific language.

This method initializes the text splitter with language-specific separators.

Parameters:
  • language (Language) – The language to configure the text splitter for.

  • **kwargs (Any) – Additional keyword arguments to customize the splitter.

Returns:

An instance of the text splitter configured for the specified language.

Return type:

RecursiveCharacterTextSplitter

classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any) TS#

Text splitter that uses tiktoken encoder to count length.

Parameters:
  • encoding_name (str)

  • model_name (str | None)

  • allowed_special (Literal['all'] | ~typing.AbstractSet[str])

  • disallowed_special (Literal['all'] | ~typing.Collection[str])

  • kwargs (Any)

Return type:

TS

static get_separators_for_language(language: Language) List[str]#

Retrieve a list of separators specific to the given language.

Parameters:

language (Language) – The language for which to get the separators.

Returns:

A list of separators appropriate for the specified language.

Return type:

List[str]

split_documents(documents: Iterable[Document]) List[Document]#

Split documents.

Parameters:

documents (Iterable[Document])

Return type:

List[Document]

split_text(text: str) List[str][source]#

Split text into chunks.

This method splits the text into chunks by: - Extracting unique opening component tags using regex - Creating separators list with extracted tags and JS separators - Splitting the text using the separators by calling the parent class method

Parameters:

text (str) – String containing code to split

Returns:

List of text chunks split on component and JS boundaries

Return type:

List[str]

transform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document]#

Transform sequence of documents by splitting them.

Parameters:
  • documents (Sequence[Document])

  • kwargs (Any)

Return type:

Sequence[Document]