How to stream LLM and Chat Model responses#
LangChain provides streaming support for LLMs. Currently, we support streaming for the OpenAI
, ChatOpenAI
, and ChatAnthropic
implementations, but streaming support for other LLM implementations is on the roadmap. To utilize streaming, use a CallbackHandler
that implements on_llm_new_token
. In this example, we are using StreamingStdOutCallbackHandler
.
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI, ChatAnthropic
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import HumanMessage
llm = OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = llm("Write me a song about sparkling water.")
Verse 1
I'm sippin' on sparkling water,
It's so refreshing and light,
It's the perfect way to quench my thirst
On a hot summer night.
Chorus
Sparkling water, sparkling water,
It's the best way to stay hydrated,
It's so crisp and so clean,
It's the perfect way to stay refreshed.
Verse 2
I'm sippin' on sparkling water,
It's so bubbly and bright,
It's the perfect way to cool me down
On a hot summer night.
Chorus
Sparkling water, sparkling water,
It's the best way to stay hydrated,
It's so crisp and so clean,
It's the perfect way to stay refreshed.
Verse 3
I'm sippin' on sparkling water,
It's so light and so clear,
It's the perfect way to keep me cool
On a hot summer night.
Chorus
Sparkling water, sparkling water,
It's the best way to stay hydrated,
It's so crisp and so clean,
It's the perfect way to stay refreshed.
We still have access to the end LLMResult
if using generate
. However, token_usage
is not currently supported for streaming.
llm.generate(["Tell me a joke."])
Q: What did the fish say when it hit the wall?
A: Dam!
LLMResult(generations=[[Generation(text='\n\nQ: What did the fish say when it hit the wall?\nA: Dam!', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {}, 'model_name': 'text-davinci-003'})
Here’s an example with the ChatOpenAI
chat model implementation:
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])
Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's oh so pure
Sparkling water, I can't ignore
Chorus:
Sparkling water, oh how you shine
A taste so clean, it's simply divine
You quench my thirst, you make me feel alive
Sparkling water, you're my favorite vibe
Verse 2:
No sugar, no calories, just H2O
A drink that's good for me, don't you know
With lemon or lime, you're even better
Sparkling water, you're my forever
Chorus:
Sparkling water, oh how you shine
A taste so clean, it's simply divine
You quench my thirst, you make me feel alive
Sparkling water, you're my favorite vibe
Bridge:
You're my go-to drink, day or night
You make me feel so light
I'll never give you up, you're my true love
Sparkling water, you're sent from above
Chorus:
Sparkling water, oh how you shine
A taste so clean, it's simply divine
You quench my thirst, you make me feel alive
Sparkling water, you're my favorite vibe
Outro:
Sparkling water, you're the one for me
I'll never let you go, can't you see
You're my drink of choice, forevermore
Sparkling water, I adore.
Here is an example with the ChatAnthropic
chat model implementation, which uses their claude
model.
chat = ChatAnthropic(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])
Here is my attempt at a song about sparkling water:
Sparkling water, bubbles so bright,
Dancing in the glass with delight.
Refreshing and crisp, a fizzy delight,
Quenching my thirst with each sip I take.
The carbonation tickles my tongue,
As the refreshing water song is sung.
Lime or lemon, a citrus twist,
Makes sparkling water such a bliss.
Healthy and hydrating, a drink so pure,
Sparkling water, always alluring.
Bubbles ascending in a stream,
Sparkling water, you're my dream!