Hugging Face Hub#
The Hugging Face Hub is a platform with over 120k models, 20k datasets, and 50k demo apps (Spaces), all open source and publicly available, in an online platform where people can easily collaborate and build ML together.
This example showcases how to connect to the Hugging Face Hub.
To use, you should have the huggingface_hub
python package installed.
!pip install huggingface_hub > /dev/null
# get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
from getpass import getpass
HUGGINGFACEHUB_API_TOKEN = getpass()
import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
Select a Model
from langchain import HuggingFaceHub
repo_id = "google/flan-t5-xl" # See https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads for some other options
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64})
from langchain import PromptTemplate, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "Who won the FIFA World Cup in the year 1994? "
print(llm_chain.run(question))
Examples#
Below are some examples of models you can access through the Hugging Face Hub integration.
StableLM, by Stability AI#
See Stability AI’s organization page for a list of available models.
repo_id = "stabilityai/stablelm-tuned-alpha-3b"
# Others include stabilityai/stablelm-base-alpha-3b
# as well as 7B parameter versions
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64})
# Reuse the prompt and question from above.
llm_chain = LLMChain(prompt=prompt, llm=llm)
print(llm_chain.run(question))
Dolly, by DataBricks#
See DataBricks organization page for a list of available models.
from langchain import HuggingFaceHub
repo_id = "databricks/dolly-v2-3b"
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64})
# Reuse the prompt and question from above.
llm_chain = LLMChain(prompt=prompt, llm=llm)
print(llm_chain.run(question))
Camel, by Writer#
See Writer’s organization page for a list of available models.
from langchain import HuggingFaceHub
repo_id = "Writer/camel-5b-hf" # See https://huggingface.co/Writer for other options
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64})
# Reuse the prompt and question from above.
llm_chain = LLMChain(prompt=prompt, llm=llm)
print(llm_chain.run(question))
And many more!