Prediction Guard#

Prediction Guard gives a quick and easy access to state-of-the-art open and closed access LLMs, without needing to spend days and weeks figuring out all of the implementation details, managing a bunch of different API specs, and setting up the infrastructure for model deployments.

! pip install predictionguard langchain
import os

import predictionguard as pg
from langchain.llms import PredictionGuard
from langchain import PromptTemplate, LLMChain
# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows
# you to access all the latest open access models (see
os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>"

# Your Prediction Guard API key. Get one at
os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"
pgllm = PredictionGuard(model="OpenAI-text-davinci-003")
pgllm("Tell me a joke")

Control the output structure/ type of LLMs#

template = """Respond to the following query based on the context.

Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦
Exclusive Candle Box - $80 
Monthly Candle Box - $45 (NEW!)
Scent of The Month Box - $28 (NEW!)
Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉

Query: {query}

Result: """
prompt = PromptTemplate(template=template, input_variables=["query"])
# Without "guarding" or controlling the output of the LLM.
pgllm(prompt.format(query="What kind of post is this?"))
# With "guarding" or controlling the output of the LLM. See the 
# Prediction Guard docs ( to learn how to 
# control the output with integer, float, boolean, JSON, and other types and
# structures.
pgllm = PredictionGuard(model="OpenAI-text-davinci-003", 
                                "type": "categorical",
                                "categories": [
                                    "product announcement", 
pgllm(prompt.format(query="What kind of post is this?"))


pgllm = PredictionGuard(model="OpenAI-text-davinci-003")
template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)

question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"

template = """Write a {adjective} poem about {subject}."""
prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"])
llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)

llm_chain.predict(adjective="sad", subject="ducks")