This output parser wraps another output parser and tries to fix any mistakes

The Pydantic guardrail simply tries to parse the LLM response. If it does not parse correctly, then it errors.

But we can do other things besides throw errors. Specifically, we can pass the misformatted output, along with the formatted instructions, to the model and ask it to fix it.

For this example, we’ll use the above OutputParser. Here’s what happens if we pass it a result that does not comply with the schema:

from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field, validator
from typing import List
class Actor(BaseModel):
    name: str = Field(description="name of an actor")
    film_names: List[str] = Field(description="list of names of films they starred in")
actor_query = "Generate the filmography for a random actor."

parser = PydanticOutputParser(pydantic_object=Actor)
misformatted = "{'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}"
JSONDecodeError                           Traceback (most recent call last)
File ~/workplace/langchain/langchain/output_parsers/pydantic.py:23, in PydanticOutputParser.parse(self, text)
     22     json_str = match.group()
---> 23 json_object = json.loads(json_str)
     24 return self.pydantic_object.parse_obj(json_object)

File ~/.pyenv/versions/3.9.1/lib/python3.9/json/__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
    343 if (cls is None and object_hook is None and
    344         parse_int is None and parse_float is None and
    345         parse_constant is None and object_pairs_hook is None and not kw):
--> 346     return _default_decoder.decode(s)
    347 if cls is None:

File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:337, in JSONDecoder.decode(self, s, _w)
    333 """Return the Python representation of ``s`` (a ``str`` instance
    334 containing a JSON document).
    336 """
--> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
    338 end = _w(s, end).end()

File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:353, in JSONDecoder.raw_decode(self, s, idx)
    352 try:
--> 353     obj, end = self.scan_once(s, idx)
    354 except StopIteration as err:

JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

During handling of the above exception, another exception occurred:

OutputParserException                     Traceback (most recent call last)
Cell In[6], line 1
----> 1 parser.parse(misformatted)

File ~/workplace/langchain/langchain/output_parsers/pydantic.py:29, in PydanticOutputParser.parse(self, text)
     27 name = self.pydantic_object.__name__
     28 msg = f"Failed to parse {name} from completion {text}. Got: {e}"
---> 29 raise OutputParserException(msg)

OutputParserException: Failed to parse Actor from completion {'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}. Got: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

Now we can construct and use a OutputFixingParser. This output parser takes as an argument another output parser but also an LLM with which to try to correct any formatting mistakes.

from langchain.output_parsers import OutputFixingParser

new_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI())
Actor(name='Tom Hanks', film_names=['Forrest Gump'])